El método gráfico de Rebhann-Poncelet para el empuje activo de Coulomb. Una aproximación interactiva

París, 1773. Charles Augustin Coulomb decide publicar, en forma de ensayo, los cálculos y las notas sobre muros de contención (entre otros temas) que, a título personal, ha ido recopilando durante sus años como ingeniero militar en la Martinica. El ensayo propone una solución analítica muy alejada de la que conocemos hoy; de hecho, recuerda más a los métodos de rebanadas o dovelas. Coulomb, muy a su pesar, admite que es una solución complicada.

Prisión de Saratov, 1813. El ingeniero Jean Victor Poncelet, capturado en la retirada de Moscú, dedica el «tiempo libre» al estudio de la geometría proyectiva. En 1840 publica su método gráfico para resolver los empujes de Coulomb, simplificando el problema, 67 años después.

Viena, 1871. George Rebhann, Decano de la facultad de Ingeniería Civil, modifica el método de Poncelet. Han pasado 98 años desde su publicación y los tiempos han cambiado. El siglo XVIII exigía muros defensivos, el siglo XIX exige muros de ferrocarril. El método de Rebhann-Poncelet permanecerá en los planes de estudio de Ingeniería Civil hasta bien entrado el siglo XX.

Valencia, 2016. El autor del blog, de nuevo en España (¡¡ vacaciones !!) pasa la tarde del domingo jugando con el GeoGebra. Es la primera vez que usa el programa y utiliza muchas más construcciones auxiliares de las necesarias (lo que ocurre cuando uno se empeña en no leer el manual de instrucciones). Le da igual, asombrado de sus posibilidades, decide calcular algo, ¿Cullmann?, ¿Cremona?,¿polígonos funiculares…? no, muros.

El resto… es esto. Con ustedes, el método gráfico de Rebhann-Poncelet para el empuje activo de Coulomb en material granular… e interactivo.

Si, he dicho interactivo, haz la prueba, mueve los deslizadores:

Las instrucciones de uso son bastante claras (creo):

  • Zoom con la rueda del ratón. Botón derecho para desplazar la figura. El icono superior derecho () reinicia el esquema.
  • El perfil del terreno se puede modificar moviendo los puntos C y D
  • Los ángulos de rozamiento del terreno (φ) y del contacto muro-terreno (δ) se pueden cambiar moviendo los respectivos deslizadores
  • El ángulo ω es fijo, con un valor de 15º
  • El punto M debe estar comprendido entre los puntos C y D
  • Si el terreno no presenta ningún quiebro, el punto C debe coincidir con el vértice B (método de Poncelet).

El empuje activo es el área del triángulo LMN (sombreado en verde) multiplicado por el peso específico del terreno. El plano de rotura, de ángulo α, es la línea AM (en rojo).

La demostración es laboriosa, pero no complicada. Si alguien tiene interés la puede encontrar en el tomo 2 del recomendable «Mecánica de suelos» de Juárez Badillo y Rico Rodríguez», que incluye también la demostración del método original de Poncelet. El libro está disponible parcialmente en Google Books.

Nota: Me temo que el applet de GeoGebra sólo funcionará en página web, así que los aprox. 2500 suscriptores por RSS y correo electrónico tendréis que entrar al blog para verlo, lo siento.

Nomenclatura de taludes: Grado, pendiente y porcentaje

Un esquema de los taludes más habituales en grados sexagesimales, pendiente (V:H) y porcentaje.

No recuerdo dónde vi este esquema por primera vez, lo que si recuerdo es que no hubo manera de hacerlo con Framework II o Lotus 1-2-3, que eran las hojas de cálculo que usaba por aquel entonces (finales de los 80), así que terminé dibujándolo en papel milimetrado (lo que me permitió comprobar que el esquema original tenía un error, por cierto).

Esquema Talud: Grados - Pendiente - Porcentaje

La siguiente versión, ya trabajando, fue en acetato transparente (si, eso que se usaba cuando no había PowerPoint) y resultaba muy útil para «intuir» -porque esa era la palabra- las pendientes en aquellos planos fotocopiados una y otra vez, cuando no enviados por fax, ¡¡ el horror !!.

Al empezar a trabajar en Bosnia decidí que ya era hora de actualizarlo, así que añadí todos los taludes que me he ido encontrando durante estos años y, ya de paso, cambié al formato V:H usado allí, más cercano al concepto de pendiente.

El archivo pdf está pensado para imprimir en A4. Espero que a alguien le sirva (y no haber cometido ningún error, claro).

icono pdfEsquema Talud: Grados – Pendiente – Porcentaje

 

PD: Otro día os cuento lo que uso para medir directamente en pantalla cuando me envían un archivo pdf o jpg.

Actualizada la Geotechnical Engineering Circular No. 7 del FHWA: Soil Nail Walls Reference Manual

Toca hablar de nuevo sobre las «Geotechnical Engineering Circular» del FHWA, porque la número 7, antes titulada “Soil Nail Walls” (lo que por aquí llamamos «muros de suelo claveteado»), ha sido actualizada, ampliada (120 páginas más) y rebautizada como “Soil Nail Walls Reference Manual”.

FHWA GEC 007 – Soil Nail Walls Reference Manual (February 2015)

Según informa GeoPrac.net, esta nueva versión implementa ya el método Load and Resistance Factor Design (LRFD), algo que están haciendo poco a poco todas las publicaciones técnicas del FHWA, y ha cambiado los ejemplos hechos con el programa SNAILZ (de CalTrans) por el Soil Nail Analysis Program (SNAP) desarrollado por la propia FHWA (hay incluso una versión de pago más completa, SNAIL PLUS).

El nuevo archivo tiene 425 páginas, ocupa 17 MB, y se puede descargar pulsando el icono inferior, así de fácil.

FHWA Geotechnical Engineering Circular Nr. 7 - “Soil Nail Walls Reference Manual”

FHWA GEC 007 – Soil Nail Walls Reference Manual (February 2015)

Y como ya dije en su día, allá por 2009, la traducción de «soil nailing» por «suelo claveteado» me sigue pareciendo un tanto extraña, sigo pensando que «suelo cosido» refleja mejor su estado, tras todo el proceso.

5ª ISRM Online Lecture: «Implementing a Reliable Slope Design», por John Read

Tenemos nueva conferencia online de la Sociedad Internacional de Mecánica de Rocas, y ya van cinco. Se emitió el pasado jueves 10 de abril y lleva por título «Implementing a Reliable Slope Design», lo que se podría traducir, maomeno, en «Cómo Implementar un Diseño de Talud Realista» (ese gerundio inglés, siempre tan polivalente).

El autor es el Dr. John Read, ingeniero geólogo con más de 40 años de experiencia en estabilidad de taludes, especialmente taludes de gran tamaño en minas a cielo abierto. Desde 2004 dirige el proyecto Large Open Pit Slope Design (LOP) en CSIRO (Commonwealth Scientific and Industrial Research Organisation), organismo en el que ha editado las completas «Guidelines for Open Pit Slope Design» y «Guidelines for Evaluating Water in Pit Slope Stability«.

La conferencia está bastante bien, sobre todo cuando explica cómo escoger datos fiables y los «Do’s y Don’ts in the Slope Design» (a partir de 29:10) aunque tiene demasiado texto, en mi opinión. Creo que con más fotos y esquemas, al estilo de las guidelines, hubiera quedado mejor. Dura algo menos de 40 minutos, pesa 100 MB y al principio la voz suena un poco metálica, pero en seguida se arregla.

Pulsa en la imagen para ver la 5ª ISRM Online Lecture:

5ª ISRM Online Lecture: «Implementing a Reliable Slope Design», por John Read

 

Os recuerdo que las cuatro conferencias anteriores sobre el Nuevo Método Austriaco (Prof. Wulf Schubert), «Solving the Unsolved Problems in Rock Mechanics and Rock Engineering» (Prof. John Hudson), «Rock Mechanics Lessons from Dams» (Dr. Pierre Duffaut) y el Deslizamiento de Vajont (Prof. Eduardo Alonso) están también en el blog.

(la conferencia de Eduardo Alonso ha desaparecido del listado de Lectures Online de la web del ISRM pero el enlace funciona sin problemas, debe ser un error)


Desprendimiento en Tramin o «like a rolling stone»

La energía ni se crea ni se destruye, nos enseñaban en clase, y este podría ser un buen ejemplo. Un bloque más o menos cúbico que se desprende desde una posición elevada y decide cambiar su energía potencial por energía cinética… arrasando todo lo que encuentra en su camino, que resulta ser una bodega.

Desprendimiento de rocas en Tramin

Ocurrió en Tramin, Italia, en la región de las Dolomitas, el pasado 21 de enero a las 21 horas. Pulsando en la imagen o en este enlace podéis acceder a la noticia original, con más información y una galería fotográfica en la que se puede ver otro bloque que decide parar justo antes de la casa (¡¡ !!) y una vista general de la zona, con un bloque muy próximo al que ha caído ahora pero con señales de llevar allí bastante tiempo (4ª fotografía), vamos, que no es algo nuevo.

Como ya dije en el post del bloque desprendido en Taiwán, en este tipo de bloques, dado su elevado volumen, no cabe hablar de sistemas de protección o de «cunetas Ritchie«, resultando mucho más adecuado establecer un buen sistema de prevención, identificando, monitorizando y «saneando» los bloques sueltos, ya sea a mano, con explosivos o incluso mediante helicópteros.

Muchas gracias al Twitter del Grupo de Ingeniería del Terreno de la Universidad de Alicante por enviarme el enlace a la noticia.

Actualización: Pablo Nieto me envía el enlace a este impresionante vídeo grabado con un dron en el que se puede ver muy bien el punto de partida de los bloques. Gracias Pablo.