Sin que sirva de precedente, voy a nombrar otra vez el fútbol en el blog, ¿la razón?, la desgraciada coincidencia entre los exámenes de junio y la Eurocopa 2012 (desgraciada para los aficionados al fútbol, claro), coincidencia que lleva a plantear exámenes de geotecnia con preguntas como esta, vista en un tweet de @AdrianAcevedo_1.
Lo llaman «caja de arena de realidad aumentada» (augmented reality sandbox) y antes de comentar nada más, os dejo con los vídeos. El primero muestra cómo funciona el invento y el segundo, la simulación de un vertido (llamarlo «virtual dam failure» me parece un poco exagerado).
Según cuenta la página web del proyecto, gracias al hackeo de Héctor Martín han podido aprovechar la cámara 3D del Microsoft Kinect para Xbox para detectar la arena (el terreno), dejando un segundo de desfase para modificar cosas (en el instante 5:30 del segundo vídeo se ve lo que ocurre cuando dejan la mano quieta durante unos segundos). Después han usado un proyector para dibujar el terreno virtual sobre la propia caja, asignando colores a las curvas de nivel, generando finalmente el agua «por imposición de manos» (lo mejor de todo).
La simulación no está mal, pero lo interesante de verdad, con mayúsculas y en negrita, INTERESANTE, es que se pueden hacer simulaciones encima de la mesa y a mano alzada, ¿incómodo?, seguramente, pero enormemente útil a efectos didácticos (para demostrar a los alumnos que todas esas cosas raras que estudiamos sirven para algo) y, sobre todo, para enseñarle a la gente por qué y para qué se hacen estas simulaciones, especialmente en el siempre doloroso tema de las inundaciones, que parecemos tontos, oye, todos los años igual.
No descubro nada nuevo si digo que, en general, se abusa de las correlaciones geotécnicas. Ya sea en mecánica de suelos o en mecánica de rocas, al final siempre se encuentra una correlación que nos proporcione el dato que estamos buscando, bien directamente, bien mediante piruetas que harían palidecer de envidia al mismísimo Barón Rojo.
A veces la situación llega a extremos absurdos, como que técnicos que en su disciplina exigen complicados métodos de cálculo, seis decimales y tolerancias imposibles, sean capaces de «despachar» el estudio geotécnico a base de encadenar una correlación tras otra hasta encontrar una relación entre el tamaño del solar y la tensión admisible del terreno… no es broma, hay edificios oficiales calculados así (– ¿Por qué edificios oficiales? – me preguntas, clavando tu pupila en mi pupila. – Ya te lo contaré otro día… y no te acerques tanto, que me pones nervioso –).
No lo digo yo, lo dice el manual, quitar los puntos y dejar una bonita línea es deshonesto, y tramposo.
Las correlaciones geotécnicas no son buenas ni malas per se, lo son dependiendo del uso que se haga de ellas. Una «estimación» (peligrosa palabra) de las propiedades del terreno, pese a no ser muy exacta –por definición–, puede ser tremendamente útil en determinadas circunstancias. Por poner sólo algunos ejemplos:
Para conocer el intervalo de variación de una propiedad en un determinado material y ver si estamos dentro de los límites (en línea con el Eurocódigo 7).
Para tanteos preliminares (eso que llamamos habitualmente «números gordos») en ubicaciones de difícil acceso o materiales en los que el coste de obtención y análisis de las muestras resulte muy elevado.
Así, a grandes rasgos se podría decir que el uso de datos obtenidos de correlaciones es más o menos correcto dependiendo de:
El mayor o menor conocimiento que se tenga de la materia (el famoso efecto «Manolete, si no sabes torear pa’ qué te metes»).
La trascendencia y responsabilidad de lo que vayamos a calcular con esos datos (mucho cuidado con lo que se firma, que el papel es muy sufrido).
La normativa existente (recuerdo una vez más que, en España, el Código Técnico de la Edificación obliga a hacer un estudio geotécnico con ensayos de campo y laboratorio en función del tipo de terreno encontrado).
Tenía que decirlo, sé que no sirve para nada, que basta con hacer pinchazos, la culpa es del suelo y las cosas se caen porque llueve… pero tenía que decirlo (de la obra pública no digo nada, con las filtraciones de la ministra ya hay bastante).
El texto de hoy se titula «Manual on Estimating Soil Properties for Foundation Design«, o sea, «Manual para estimar propiedades del suelo para el diseño de cimentaciones«. Editado por el «Electric Power Research Institute«, sus autores son F. H. Kulhawy y P. W. Mayne (también autor del manual FHWA de caracterización geotécnica). Está enfocado a cimentaciones de instalaciones eléctricas de pequeña entidad. Es de 1990, tiene 308 páginas y cuenta con muchas, muchísimas correlaciones geotécnicas.
Por supuesto, las correlaciones geotécnicas también son muy útiles para engañar al cliente y no hacer los ensayos requeridos, como intentaba hacer el «experimentado» Director ¿Técnico? de un famoso (y acreditado) laboratorio con el que he tratado esta semana, que quería convencerme de que «para calcular un coeficiente de consolidación lo mejor es hacer SPT«.
Evidentemente, era una excusa para no hacer edómetros. ¿Por qué no sabía hacerlos?, ¿por qué no sabía interpretarlos?, ¿por qué no sabía de qué narices le estaba hablando?, ¿todo a la vez?, a saber.
¿Cuántas veces le habrá salido bien la jugada?, muchas, me temo, dada su inmerecida fama.
En casi todas las disciplinas (y el casi va por las matemáticas) se hacen modelos y ensayos a escala reducida. A nivel académico, lo más habitual son las estructuras con papel, aunque también se hacen puentes con espaguetis (y muy resistentes, además), así que… ¿por qué no hacer un modelo reducido de un muro de tierra armada con papel?
un muro de tierra armada de papel en un estado límite último
Los primeros modelos reducidos son geotécnicos. Ya desde el colegio aprehendemos los conceptos de límite líquido, límite plástico e índice de plasticidad… la arcilla es plástica y hay un margen de humedad en el que se puede modelar, la arena es granular y no se puede, punto, mecánica de suelos en estado puro. El concepto, la base, el cimiento…
El resultado final de ese primer modelo no es ninguna maravilla, suele ser un cenicero o un adorno con unos dedos marcados que hace babear a los progenitores y abuelos del artista, ignorantes ellos de que lo importante no es el objeto, sino la experiencia, marcada en la memoria, “barro primigenio”.
Lamentablemente, todos esos conocimientos geotécnicos se pierden como lágrimas en la lluvia con la edad y pronto otros juguetes ocupan el lugar de la geotecnia… salvo que participes en competiciones como el GeoChallenge del ASCE.
La prueba consta de tres fases:
GeoPrediction. Se trata de un problema teórico sobre el comportamiento de un suelo, premiado con el trofeo Círculo de Mohr. Este año era un problema de asientos de consolidación. Si quieres intentarlo, aquí tienes las normas, el enunciado, las columnas, los ensayos de campo (SPT al 60%, CPTu) y los listados de los ensayos de laboratorio (edómetros, mayormente).
GeoPoster. Es un póster con los resultados de un trabajo, en la línea de lo que hablaba el otro día sobre la presentación de datos técnicos (más info).
El GeoChallenge 2012 se ha celebrado en el GeoCongress 2012 de Oakland, California, los días 25, 26 y 27 de marzo de 2012. Han participado equipos de 17 universidades. El GeoWall lo ha ganado el equipo de Cal Poly Pomona.
A continuación, el vídeo oficial del evento:
Y ahora un vídeo triunfal del making of, hecho por el equipo ganador, en el que se puede ver muy bien cómo funciona un muro de tierra armada y qué parte del terreno participa realmente de la rotura.
Las cargas en coronación y la estabilidad de taludes no se llevan bien. Todos sabemos que no se deben colocar cargas en la coronación de un talud o al borde de una excavación… y todos sabemos que se colocan. A veces se trata del propio terreno excavado (“es que llevarlo más lejos es muy incómodo”) y otras de material acopiado (“es que tenerlo cerca es más cómodo”), pero la cuestión es que se hace.
Si hay un país preocupado por la estabilidad de taludes es Holanda. No tiene montañas, cierto, la máxima altura es de 321 msnm, pero tiene diques, muchísimos, y los diques tienen taludes, uno a cada lado.
La denominación oficial de Holanda es Países Bajos, y el nombre no se queda corto, son tan bajos que la viabilidad del 50% del territorio depende de su sistema de diques. La última vez que fallaron, en 1953, hubo más de 1.800 muertos y 70.000 evacuados, dando origen al ambicioso Plan Delta.
Existan «fórmulas holandesas» para muchos ensayos de penetración
Hayan creado un programa de elementos finitos para geotecnia, como el PLAXIS
Tengan un campo de pruebas a escala real para estudiar y controlar la estabilidad de los diques, llamado IJkdijk (de ijken=calibrar y dijk=dique)
Pulsa sobre la imagen para ver mejor el dique antes de la rotura (Fuente: Siemens)
Como se suele decir, “en casa del herrero, cuchillo de palo”, ni siquiera los holandeses se libran de tener una torre inclinada por un fallo de cimentación, como es la torre inclinada Oude Kerk, en Delft, pero hoy quiero tratar el tema de los diques, porque, ¿qué se hace con un dique de pruebas? pues probarlo, evidentemente, ¿y cómo se prueba? pues creando una situación lo más parecida posible al caso real… y llevándolo al límite, en este caso, mediante cargas en coronación del talud, contenedores llenos de agua, más exactamente.
El dique de la figura tiene (o tenía) 100 m de longitud, 30 m de anchura, 6 m de altura, núcleo de arena y espaldones de arcilla (1:1,5 y 1:2,5). El esquema del ensayo es muy simple, colocaron sensores por todas partes (inclinómetros, células, cámaras, GPS, LIDAR, infarrojos, etc), luego «jugaron» con los niveles piezométricos hasta alcanzar la situación más parecida a la realidad… y después llenaron de agua los contenedores de la parte superior.
La rotura se produjo el sábado 27 de septiembre de 2008, a las 16:02, hora local, y durante 42 horas grabaron más de 1 TB de información.
Pulsa sobre la imagen para ver mejor el dique después de la rotura (Fuente: Siemens)
Por cierto, el campo de pruebas está tan pegado a la frontera que si el dique hubiera caído un poco más lejos habrían tenido un conflicto internacional con Alemania (es broma… hay casi 50 metros de distancia, por lo menos).
En cumplimiento de la Ley 34/2002 te comunico que este blog utiliza cookies. ValeSaber más
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.