«Los 10 Mandamientos de las Clasificaciones Geomecánicas RMR y Q», según Bieniawski

Las clasificaciones geomecánicas son una gran ayuda a la hora de caracterizar las propiedades de un macizo rocoso… siempre y cuando se utilicen de forma adecuada, evidentemente. En caso de duda, he aquí los “diez mandamientos” para un uso correcto de las clasificaciones geomecánicas RMR y Q, según R. Z. Bieniawski Von Preinl.

***

I. Asegúrate de que los parámetros de la clasificación son cuantitativos (están medidos, no sólo descritos), adecuados, provienen de ensayos normalizados, pertenecen a cada región estructural geológica, y se basan en sondeos, galerías de exploración y cartografía geológica de superficie, además de en sísmica de refracción que permita interpolar entre el inevitablemente escaso número de sondeos.

II. Sigue los procedimientos establecidos para clasificar los macizos rocosos con el RMR y el Q y determina los rangos de variación típicos y los valores medios.

III. Utiliza las dos clasificaciones y comprueba los valores obtenidos con las correlaciones publicadas entre Bieniawski (1976) y Barton (2008).

IV. Estima las propiedades del macizo rocoso, en particular el módulo del macizo (para su uso en modelos numéricos) y el tiempo de autoestabilidad. No olvides incluir un ajuste para los túneles construidos con TBM.

V. Estima las necesidades preliminares de sostenimiento aplicando las dos correlaciones en la selección.

VI. Utiliza la modelización numérica, obteniendo factores de seguridad, y comprueba que se dispone de suficiente información. Usa por lo menos dos criterios de comparación y coteja los resultados proporcionados por el criterio de Hoek-Brown.

VII. Si no se dispone de información suficiente, admite que el método de diseño iterativo requiere de una exploración geológica más intensiva y de nuevos ensayos, por ejemplo medidas del estado tensional, si fuera necesario.

VIII. Ten en cuenta el proceso constructivo, y en el caso de los estudios de viabilidad de las tuneladoras, estima las velocidades de avance usando el QTBM y el Índice de Excavabilidad de macizos rocosos RME.

IX. Asegúrate de que toda la información sobre la caracterización del macizo rocoso esté incluida en un Informe Geotécnico para Especificaciones del Diseño que trate sobre la metodología de diseño, las hipótesis y estimaciones asumidas y las desviaciones estándar de los datos.

X. Realiza los levantamientos del RMR y el Q a medida que avance la construcción, de manera que puedan compararse las condiciones previstas con las reales con objeto de verificar el diseño o realizar las modificaciones oportunas.

Bonus: Naturalmente, no es necesario resaltar que deben incluirse ensayos de laboratorio que estén de acuerdo con la normativa y cuenten con un presupuesto adecuado. Los ingenieros y los geólogos deberían trabajar en equipo y comunicarse regularmente entre ellos y con el cliente.

***

Puedes ampliar la información en el post dedicado al artículo sobre «Errores en la aplicación de las Clasificaciones Geomecánicas y su corrección», de R. Z. Bieniawski.


«El colapso de la estación de Pinheiros de enero de 2007», por Nick Barton

Otra conferencia o Keynote Lecture del Eurock 2009, esta vez a cargo de Nick Barton, muy conocido por la Clasificación Geomecánica Q de Barton, Lien y Lunde, y que en esta ocasión estudia el colapso producido en la estación de Pinheiros, en la línea 4 del metro de Sao Paulo, en enero de 2007.

Se trata de un problema recurrente, los túneles de metro profundos no gustan, la gente ya no quiere bajar tramos y más tramos de escaleras hasta el centro de la tierra, están pasados de moda, ahora se buscan estaciones poco profundas, amplias, luminosas y diáfanas, lo cual resulta problemático porque eso implica hacerlas muy superficiales, y ya se sabe que los niveles más superficiales del terreno suelen ser también los más alterados, por no mencionar que son también los niveles ocupados por las cimentaciones más próximas. 

En este caso, el colapso afectó a una longitud de 40 metros con una luz de 19 metros, se llevo por delante a siete personas y se parece mucho a otros colapsos de frente… quizá demasiado.

La conferencia lleva por título «Metro construction at the most unfavourable depth caused a major metro station collapse in Brazil due to a unique sub-surface structure” y está disponible también como artículo [pdf comprimido en zip, 2,17 MB]. Tiene una duración de 42 minutos y habría ganado mucho si hubieran apagado la luz, francamente.

Si alguien quiere más información, tiene más datos en esta presentación [pdf – 10 MB] y algunas fotografías interesantes en esta cuenta de Flickr.


El perfilómetro y la rugosidad de la junta

En mecánica de rocas, la rugosidad de las juntas desempeña un papel muy importante, especialmente cuando se trata de juntas cerradas. A mayor rugosidad, mayor resistencia a corte, lo cual permite, junto con la cohesión (o resistencia a corte bajo tensión normal nula) y los “puentes de roca”, que cosas como ésta puedan mantenerse en su sitio sin caer sobre la calzada:

Carretera A-2403 cerca del Parque Geológico de Aliaga, en Teruel

Los primeros criterios de rotura de mecánica de rocas, como los de Patton (1966), Ladanyi y Archambault (1969) o Jaeger (1971), trataban la rugosidad de la junta como un incremento del ángulo de rozamiento pero, poco a poco, la rugosidad fue ganando importancia hasta convertirse en el parámetro JRC (Joint Roughness Coefficient) del criterio de Barton (1973 → 1990), o el Jr de la clasificación geomecánica Q de Barton, Lien y Lunde (1974 → 2002).

Dependiendo de la escala se habla de aspereza o de rugosidad propiamente dicha. A pequeña escala (milimétrica o centimétrica), la aspereza de una junta puede ser rugosa, suave o pulida. A mayor escala (decimétrica o métrica), la rugosidad puede ser plana, ondulada o escalonada. Así, dependiendo del problema, la rugosidad debería calcularse teniendo en cuenta el factor de escala existente entre la muestra y el macizo (sin olvidar el sentido común) pero, ¿cómo cuantificamos la rugosidad de la muestra?

Hay varios métodos, los perfiles tipo de Barton y Choubey de la figura superior (con el JRC para longitudes de junta de 20 cm y 1 m), barras graduadas, discos con brújula, ensayos in situ -como el de inclinación o Tilt test-, ensayos de corte directo y, por supuesto, métodos modernos mediante fotointerpretación, laser escáner y análisis fractal de imagen… pero si no estamos muy seguros, siempre podemos hacer uso de métodos simplificados como, por ejemplo, el perfilómetro, también llamado «peine de Barton».


Como se puede ver, el perfilómetro no es ninguna maravilla de la tecnología, pero ayuda en esos casos en los que la observación visual resulta complicada, permitiendo “calcar” el perfil real de la junta para estudiarlo con tranquilidad y ver si se ajusta a alguno de los perfiles tipo o requiere un cálculo más detallado.

Aunque en ciertos catálogos especializados se pueden ver perfilómetros con precios comprendidos entre 30 y 90 €, la verdad es que el sofisticado perfilómetro de las fotografías me costó algo menos de 2 € en una oferta de unos grandes almacenes de bricolaje… evidentemente, no es de la mejor calidad, pero no vale la pena afinar tanto, si te sobra el dinero mejor compra deuda pública.

«Mecánica de Rocas Aplicada a la Minería Metálica Subterránea»

El libro que presento hoy lleva por título «Mecánica de rocas aplicada a la minería metálica subterránea» y, al igual que ya pasó con el Manual de Taludes, cambia entre ediciones, si el Manual de Taludes cambió de nombre (conservando el ISBN), este modificó su formato, eliminó un par de temas y, lo más curioso, cambió de autores.

Mecánica de Rocas Aplicada a la Minería Metálica Subterránea

Como su nombre indica, trata de mecánica de rocas y de minería metálica subterránea (más o menos al 50%), a lo largo de más de 300 páginas. Es un libro muy recomendable, con temas muy bien explicados (el de los criterios de rotura, por ejemplo) aunque en otros esté algo desfasado ya, como el de la clasificación geomecánica Q de Barton, más que nada porque el libro es de 1991 y Barton revisó su método casi por completo en 2002, en un completo artículo del International Journal of Rock Mechanics and Mining Sciences que figura entre los 10 más citados de dicha revista (en el momento de escribir esta entrada, septiembre de 2009).

El «Mecánica de rocas aplicada a la minería metálica subterránea» me costó lo mismo que el Manual de Taludes, 3.120 ptas (18,75 €). Su precio actual en el catálogo de publicaciones del IGME de 2009 (pdf) es de 12,50 €, mientras que el Manual de taludes vale 30 €… no tengo muy claro qué baremo usan para determinar los precios, la verdad.

La versión que dejo aquí no es exactamente la misma que hay en la web del IGME, he corregido un par de páginas que se habían ido de sitio durante el proceso de escaneado.

Mecánica de Rocas Aplicada a la Minería Metálica Subterránea

Mecánica de rocas aplicada a la minería metálica subterránea [pdf – 24 MB]

 

Por cierto, en el libro no queda muy claro de qué año es la Clasificación Geomecánica de Protodyakonov. Hace unos años hice un «estado del arte» de las clasificaciones geomecánicas y pude comprobar que es de principios del siglo XX, pero muchos textos (como este manual) la fechan en 1962, seguramente porque las fuentes originales están en ruso y son difíciles de encontrar. En fin, si alguien lo sabe le agradecería que me lo dijera.