“Geomechanics of Failures”, de Puzrin, Alonso y Pinyol, un libro muy recomendable

Geomechanics of Failures, Alexander M. Puzrin, Eduardo E. Alonso, Núria M. Pinyol.

Geomechanics of Failures, Alexander M. Puzrin, Eduardo E. Alonso, Núria M. Pinyol.

Los seguidores del blog saben que prefiero enlazar documentos de libre descarga y que cuando anuncio libros “de pago” es para completar la información del post.

Que yo recuerde, todavía no había recomendado directamente la compra de ningún libro, pero este va a ser el primero (y será el segundo, que son dos tomos) porque se lo merece, sin duda alguna. Se trata del Geomechanics of Failures, de Alexander M. Puzrin, Eduardo E. Alonso y Núria M. Pinyol.

El libro, dividido en tres secciones, estudia ocho problemas con todo lujo de detalles: introducción histórica, teoría, fórmulas, modelos, hipótesis, cálculos, resultados y, lo más importante, comentarios críticos sobre todos los aspectos anteriores.

Estos son los problemas tratados:

  • Asientos (Settlements)
    • Interacción entre estructuras próximas: La Catedral Metropolitana de México
    • Los inesperados y excesivos asientos del Aeropuerto Internacional de Kansai (1987~)
    • Un clásico: La Torre de Pisa
  • Capacidad de Carga (Bearing Capacity)
    • El silo de Transcona (1913)
    • La licuefacción de los diques del puerto de Barcelona (2001)
  • Excavaciones (Excavations)
    • El colapso de la Autopista Nicoll, en Singapur (2004)
    • El hundimiento del Túnel de la Plaza Borrás, en Barcelona (1991)
    • El colapso del frente de los Túneles de la Floresta, en Barcelona (1989)

En resumen, un libro al que dedicarle muchas, muchísimas horas, con un epílogo (pag. 245) que es toda una declaración de intenciones.

Como el libro está (parcialmente) en Google Books, aprovecho para ponerlo aquí y que podáis pegarle un vistazo y juzgar por vosotros mismos:

Si quieres comprar el Geomechanics of Failures puedes hacerlo en este enlace afiliado, a ti te costará lo mismo y yo me llevaré un pequeño porcentaje por haberlo anunciado. Si te gusta el blog es una forma de ayudar a que siga en marcha (aunque si me quieres dar dinero directamente o contratarme también podemos hablar, por mi no hay problema).

 

En unos días haré una entrada dedicada al segundo tomo (si tienes mucha prisa por verlo y no puedes esperar es el Geomechanics of Failures: Advanced Topics… impaciente)


Muros de tierra armada a escala reducida. GeoWall 2012

En casi todas las disciplinas (y el casi va por las matemáticas) se hacen modelos y ensayos a escala reducida. A nivel académico, lo más habitual son las estructuras con papel, aunque también se hacen puentes con espaguetis (y muy resistentes, además), así que… ¿por qué no hacer un modelo reducido de un muro de tierra armada con papel?

Muro de tierra armada, GeoWall 2012

un muro de tierra armada de papel en un estado límite último

Los primeros modelos reducidos son geotécnicos. Ya desde el colegio aprehendemos los conceptos de límite líquido, límite plástico e índice de plasticidad… la arcilla es plástica y hay un margen de humedad en el que se puede modelar, la arena es granular y no se puede, punto, mecánica de suelos en estado puro. El concepto, la base, el cimiento…

El resultado final de ese primer modelo no es ninguna maravilla, suele ser un cenicero o un adorno con unos dedos marcados que hace babear a los progenitores y abuelos del artista, ignorantes ellos de que lo importante no es el objeto, sino la experiencia, marcada en la memoria, “barro primigenio”.

Lamentablemente, todos esos conocimientos geotécnicos se pierden como lágrimas en la lluvia con la edad y pronto otros juguetes ocupan el lugar de la geotecnia… salvo que participes en competiciones como el GeoChallenge del ASCE.

La prueba consta de tres fases:

  • GeoPrediction. Se trata de un problema teórico sobre el comportamiento de un suelo, premiado con el trofeo Círculo de Mohr. Este año era un problema de asientos de consolidación. Si quieres intentarlo, aquí tienes las normas, el enunciado, las columnas, los ensayos de campo (SPT al 60%, CPTu) y los listados de los ensayos de laboratorio (edómetros, mayormente).
  • GeoPoster. Es un póster con los resultados de un trabajo, en la línea de lo que hablaba el otro día sobre la presentación de datos técnicos (más info).
  • GeoWall. La prueba más interesante. Consiste en hacer un modelo a escala de un muro de tierra armada (mechanically stabilized earth, MSE) con papel, repito, con papel. El muro debe soportar una carga vertical y otra lateral (especificaciones). Al equipo ganador le dan el Trofeo Atterberg, en forma de cuchara de Casagrande (si no sabes quién fue Atterberg ya tardas en pulsar).

El GeoChallenge 2012 se ha celebrado en el GeoCongress 2012 de Oakland, California, los días 25, 26 y 27 de marzo de 2012. Han participado equipos de 17 universidades. El GeoWall lo ha ganado el equipo de Cal Poly Pomona.

A continuación, el vídeo oficial del evento:

 

Y ahora un vídeo triunfal del making of, hecho por el equipo ganador, en el que se puede ver muy bien cómo funciona un muro de tierra armada y qué parte del terreno participa realmente de la rotura.

Visto en GeoPrac.


La placa de carga necesita un contrapeso

[Si, ya sé que no es «placa de carga» sino “carga con placa” pero, ¿alguien lo llama así, además de la norma?]

RRRIIIINNGG (se supone que esto es la onomatopeya de una llamada telefónica)

– Oye, necesito un estudio geotécnico, aunque no sé que decirte, es un solar tan estrecho que casi no haría falta hacerlo, de verdad, es largo y muy estrecho, casi un pasillo.

(si me hubieran dado un euro cada vez que he oído esa excusa no sería rico, pero tendría un montón de calderilla)

– Entendido, tienes un solar que parece una pista de bolos, no quieres hacer estudio geotécnico y quieres que alguien te lo justifique, ¿es eso?

– Si, pero no hay problema, el terreno es buenísimo, no hace falta calcular nada, todo el pueblo está calculado con dos kilos y medio.

(con esta excusa tampoco sería millonario, pero ya faltaría menos)

– ¿Sabes?, el estudio geotécnico es obligatorio para evitar este tipo de conversaciones, precisamente.

– No, de verdad, te lo juro, no cabe una máquina de sondeos, ya lo he mirado, no entra, te lo juro.

– No jures tanto en vano, que irás al infierno. A ver… ¿y qué sugieres?

(por favor, la placa de carga no, por favor, la placa de carga no, por favor, la placa no)

– Pues me han dicho que una placa de carga podría servir, que en carreteras las usan mucho.

(arghhhhh… siempre igual, me han dicho, he oído, me han contado…)

– Ya, pero las carreteras son una cosa y los cimientos de edificación, otra, y una placa de carga se queda muy corta, para lo que quieres.

– No hay problema, pondré la más grande que haya, de verdad, la más grande.

– Hombre, cuánto más grande, mejor aunque, dime una cosa, sólo por curiosidad, ¿un camión entraría en ese “pasillo” tuyo?

– Un camión, ¿para qué narices quieres tú un camión?

– Yo para nada, pero tu placa de carga “enorme-que-te-cagas” va a necesitar uno.

– ¡¡ De eso nada !!, a mi me han dicho que llegan allí, ponen en el suelo una especie de “plancha” redonda, le dan a una palanca y ya no hacen falta ensayos ni nada más. Ah, y también me dan el módulo de balasto.

(ya estamos con el módulo de balasto… qué manía)

– Vale, lo que tú digas… ¿qué superficie tiene una placa circular?

– Pues… π por el radio al cuadrado o π/4 por el diámetro al cuadrado, ¿no?.

– Correcto, tomando π igual a 3 serían, ¾ del diámetro al cuadrado, y la placa más grande tiene poco más de 0,75 m de diámetro, que también son ¾, así que tendríamos una superficie de (¾)³, unos 0,4 m², haciendo un número gordo.

– Supongo que si, no lo sé, ¿y eso qué importa?

– Pues bastante, porque si queremos cargar esa “plancha” con 250 kN/m², tus “dos-kilos-y-medio-autóctonos”, necesitaremos una carga de 250 kN/m² x 0,4 m²,o sea, 100 kN, para que lo entiendas, 10.000 kilogramos, 10 toneladas.

– ¡¿ 10 toneladas ?!, ¡¡ ni hablar !!, ¿y si cojo la más pequeña?

– Sigues necesitando más de 1.000 kg, y de todos modos, tampoco sirve, así que quítate la idea de la cabeza y mira a ver si entra la máquina.

– Vaaale, voy a medirlo otra vez y ahora te vuelvo a llamar… ¡¡ aguafiestas !!

– Si, claro, ahora la culpa es mía…

 

Ensayo de placa de carga - vista de detalle

Una foto del ensayo de placa de carga con sus relojitos y su canesú

Ensayo de placa de carga - vista general

Y aquí una vista general, con el camión actuando de contrapeso

 

Otro día hablamos de la placa dinámica, por hoy ya vale.


Seguridad laboral en cimentaciones. Pilotes

A veces se olvida, pero la prevención y la seguridad laboral en la obra pueden exceder el propio recinto de la obra, como ocurre con esta perforadora de pilotes o pilotera.

Si, «eso rojo» que hay debajo es un coche, totalmente aplastado.

Seguridad Laboral. Accidente Pilotes Metro Madrid Mayo 2005

Según el remitente de la fotografía, el accidente tuvo lugar en las obras del metro de Madrid, conexión Atocha – Chamartín, en mayo de 2005.

Pulsando encima puedes ampliar la imagen.

Estabilidad de taludes en diques. Un ensayo a escala real en Holanda

Las cargas en coronación y la estabilidad de taludes no se llevan bien. Todos sabemos que no se deben colocar cargas en la coronación de un talud o al borde de una excavación… y todos sabemos que se colocan. A veces se trata del propio terreno excavado (“es que llevarlo más lejos es muy incómodo”) y otras de material acopiado (“es que tenerlo cerca es más cómodo”), pero la cuestión es que se hace.

Si hay un país preocupado por la estabilidad de taludes es Holanda. No tiene montañas, cierto, la máxima altura es de 321 msnm, pero tiene diques, muchísimos, y los diques tienen taludes, uno a cada lado.

La denominación oficial de Holanda es Países Bajos, y el nombre no se queda corto, son tan bajos que la viabilidad del 50% del territorio depende de su sistema de diques. La última vez que fallaron, en 1953, hubo más de 1.800 muertos y 70.000 evacuados, dando origen al ambicioso Plan Delta.

Visto lo anterior no resulta extraño que:

  1. La Universidad Técnica de Delft sea muy buena en geotecnia de suelos blandos
  2. Existan «fórmulas holandesas» para muchos ensayos de penetración
  3. Hayan creado un programa de elementos finitos para geotecnia, como el PLAXIS
  4. Tengan un campo de pruebas a escala real para estudiar y controlar la estabilidad de los diques, llamado IJkdijk (de ijken=calibrar y dijk=dique)
Estabilidad de taludes. Vista aérea del dique a escala real de IJkdijk

Pulsa sobre la imagen para ver mejor el dique antes de la rotura (Fuente: Siemens)

Como se suele decir, “en casa del herrero, cuchillo de palo”, ni siquiera los holandeses se libran de tener una torre inclinada por un fallo de cimentación, como es la torre inclinada Oude Kerk, en Delft, pero hoy quiero tratar el tema de los diques, porque, ¿qué se hace con un dique de pruebas? pues probarlo, evidentemente, ¿y cómo se prueba? pues creando una situación lo más parecida posible al caso real… y llevándolo al límite, en este caso, mediante cargas en coronación del talud, contenedores llenos de agua, más exactamente.

Estabilidad de taludes. Sección transversal del dique de pruebas de IJkdijk

El dique de la figura tiene (o tenía) 100 m de longitud, 30 m de anchura, 6 m de altura, núcleo de arena y espaldones de arcilla (1:1,5 y 1:2,5). El esquema del ensayo es muy simple, colocaron sensores por todas partes (inclinómetros, células, cámaras, GPS, LIDAR, infarrojos, etc), luego «jugaron» con los niveles piezométricos hasta alcanzar la situación más parecida a la realidad… y después llenaron de agua los contenedores de la parte superior.

La rotura se produjo el sábado 27 de septiembre de 2008, a las 16:02, hora local, y durante 42 horas grabaron más de 1 TB de información.

Estabilidad de taludes. Detalle del dique de IJkdijk, tras la rotura del talud

Pulsa sobre la imagen para ver mejor el dique después de la rotura (Fuente: Siemens)

Por cierto, el campo de pruebas está tan pegado a la frontera que si el dique hubiera caído un poco más lejos habrían tenido un conflicto internacional con Alemania (es broma… hay casi 50 metros de distancia, por lo menos).

La idea de esta entrada vino al ver el vídeo en The Landslide Blog.