El perfilómetro y la rugosidad de la junta

En mecánica de rocas, la rugosidad de las juntas desempeña un papel muy importante, especialmente cuando se trata de juntas cerradas. A mayor rugosidad, mayor resistencia a corte, lo cual permite, junto con la cohesión (o resistencia a corte bajo tensión normal nula) y los “puentes de roca”, que cosas como ésta puedan mantenerse en su sitio sin caer sobre la calzada:

Carretera A-2403 cerca del Parque Geológico de Aliaga, en Teruel

Los primeros criterios de rotura de mecánica de rocas, como los de Patton (1966), Ladanyi y Archambault (1969) o Jaeger (1971), trataban la rugosidad de la junta como un incremento del ángulo de rozamiento pero, poco a poco, la rugosidad fue ganando importancia hasta convertirse en el parámetro JRC (Joint Roughness Coefficient) del criterio de Barton (1973 → 1990), o el Jr de la clasificación geomecánica Q de Barton, Lien y Lunde (1974 → 2002).

Dependiendo de la escala se habla de aspereza o de rugosidad propiamente dicha. A pequeña escala (milimétrica o centimétrica), la aspereza de una junta puede ser rugosa, suave o pulida. A mayor escala (decimétrica o métrica), la rugosidad puede ser plana, ondulada o escalonada. Así, dependiendo del problema, la rugosidad debería calcularse teniendo en cuenta el factor de escala existente entre la muestra y el macizo (sin olvidar el sentido común) pero, ¿cómo cuantificamos la rugosidad de la muestra?

Hay varios métodos, los perfiles tipo de Barton y Choubey de la figura superior (con el JRC para longitudes de junta de 20 cm y 1 m), barras graduadas, discos con brújula, ensayos in situ -como el de inclinación o Tilt test-, ensayos de corte directo y, por supuesto, métodos modernos mediante fotointerpretación, laser escáner y análisis fractal de imagen… pero si no estamos muy seguros, siempre podemos hacer uso de métodos simplificados como, por ejemplo, el perfilómetro, también llamado «peine de Barton».


Como se puede ver, el perfilómetro no es ninguna maravilla de la tecnología, pero ayuda en esos casos en los que la observación visual resulta complicada, permitiendo “calcar” el perfil real de la junta para estudiarlo con tranquilidad y ver si se ajusta a alguno de los perfiles tipo o requiere un cálculo más detallado.

Aunque en ciertos catálogos especializados se pueden ver perfilómetros con precios comprendidos entre 30 y 90 €, la verdad es que el sofisticado perfilómetro de las fotografías me costó algo menos de 2 € en una oferta de unos grandes almacenes de bricolaje… evidentemente, no es de la mejor calidad, pero no vale la pena afinar tanto, si te sobra el dinero mejor compra deuda pública.

«Tunnelling in Overstressed Rock», por Evert Hoek

Siguiendo con las conferencias “on line” del Eurock 2009, llegamos ahora a los túneles en rocas sometidas a grandes tensiones, una conferencia de Evert Hoek, que se resiste a la jubilación, por lo que se ve, y Paul Marinos, de la National Technical University of Athens, aunque la charla corre a cargo de Evert Hoek, únicamente.

Evert Hoek es un nombre clave de la mecánica de rocas. A mediados de los 70 escribió con John Bray uno de los libros de cabecera de la estabilidad de taludes en roca, el “Rock Slope Engineering”, y unos años después, con Edwin Brown, el “Underground Excavations in Rock”, en el que aparecía ya el famoso criterio de rotura de Hoek-Brown.

Este criterio permitía, con las debidas precauciones, «asimilar» el comportamiento de un macizo rocoso al de un suelo. En principio con el parámetro RMR de Bieniawski y, a partir de 1995, con el Geological Strength Index o GSI, aunque posteriormente, a raíz de los trabajos de Paul Marinos en el metro de Atenas, ha modificado un poco el método.

El criterio de Hoek-Brown representó un cambio positivo, al eliminar parte del empirismo que rodeaba a la mecánica de rocas, pero también negativo, ya que introdujo la “calculitis”, esa preocupante «fe ciega» en los números al margen de la realidad que tantos problemas nos está dando, especialmente cuando el aumento de exactitud se compensa con un menor reconocimiento del terreno, una preocupación que subyace entre líneas en los artículos de Hoek, por cierto.

[Puede que los puristas no esten del todo de acuerdo con esta entrada, pero sólo quiero presentar el vídeo, no discutir quién hizo qué primero. El propio Hoek ha reconocido que hay criterios de rotura para hormigones de los años 30 del siglo XX idénticos al suyo, pero ya habrá tiempo de discutir eso otro día]

La charla dura 27 minutos y tiene versión en pdf [2,24 MB], que la disfrutéis.

El inquietante RQD de Deere

[…] el comportamiento de una obra de ingeniería en una masa rocosa atravesada por discontinuidades viene seguramente más influenciado por el carácter de las superficies que la forman y por el tipo de material de relleno, que por la mera presencia de las discontinuidades.

Deere, Don U. 1963, «Technical Description of Rock Core for Technical Purposes».

La recuperación de un sondeo se define como el porcentaje de testigo obtenido respecto de la longitud total del sondeo, y aunque para sondeos en suelo es un parámetro muy útil, para sondeos en roca no se puede decir lo mismo, ya que en estos materiales la recuperación suele ser casi siempre muy alta.

Buscando un índice que discriminara algo mejor esa recuperación, Don U. Deere definió entre ¿1963? y 1967 su RQD, o Rock Quality Designation, como el porcentaje de recuperación de testigos de más de 10 cm de longitud (en su eje, y sin tener en cuenta las roturas debidas al propio proceso de perforación) respecto de la longitud total de sondeo.

Este es el esquema de su artículo de 1988, idéntico al que aparece en la norma ASTM D 6032-02:

RQD, Rock Quality Designation

Como suele pasar en geotecnia, lo que triunfa es lo cómodo y fácil de usar (que sea más o menos exacto, ya es otro tema) así que, en muy poco tiempo, el RQD pasó a formar parte de las clasificaciones geomecánicas más habituales, aunque se debe tener en cuenta que:

  • No sirve para suelos, por mucho que algunos se empeñen
  • Se desarrolló para rocas ígneas, por lo que falla bastante en rocas estratificadas
  • No debe tenerse en cuenta en el caso de roturas por desecación, retracción o tensiones longitudinales
  • Depende de la dirección del sondeo
  • Hay que saber usarlo con precaución

Bien, pues dicho todo lo anterior y a pesar de ser tan popular, si alguien se molesta en consultar el artículo publicado por Deere en 1963, «Technical Description of Rock Core for Technical Purposes [pdf, 7 MB]» comprobará que NO SE MENCIONA PARA NADA EL RQD y que, además, es citado erróneamente por casi todos los autores posteriores, desde Bieniawski hasta Barton, pasando por Hoek y Brown, que lo sitúan en 1964, error que persiste en la Wikipedia (al menos, en el momento de escribir esto, en marzo de 2010).

La historia completa aparece en una amena comunicación de 1985, de Elías García González, por aquella época Director de Obra Civil de INECO, con el acertado título de «Un parámetro geomecánico algo inquietante, el RQD [pdf, 2 MB]«, incluida en un «Simposio sobre el Proyecto de Túneles» que organizó Manuel Romana en la E.T.S. de Ingenieros de Caminos, Canales y Puertos de Valencia.

Se trata de una lectura muy recomendable para todo aquel que tenga curiosidad por saber cómo aplicar el RQD, cuál es su rango de validez y cómo influyó en el resto de clasificaciones geomecánicas posteriores, en la que se puede leer: «Por si puede aclararnos esta cuestión del verdadero origen del concepto RQD hace unos días escribimos a D. U. Deere, contándole lo esencial de esta historia«…

Curiosamente… tres años más tarde, en 1988, Deere publicó otro artículo titulado «The Rock Quality Designation (RQD) in Practice [pdf, 9 MB]» en el que dedicó los primeros párrafos a justificar por qué no aparecía el RQD en el artículo de 1963 y remarcando que la primera aparición publicada del RQD fue en 1967, con una nota al pie que dice «An incorrect reference inadvertently cited in this paper credited Deere with the introduction of RQD in his 1963 paper«.

¿Tuvo algo que ver la petición de Elías García con esta aclaración…?

A saber.

(Existe también cierta leyenda según la cual el RQD no lo desarrolló Deere sino uno de sus becarios, pero como sólo he oído noticias sueltas y jamás he visto nada por escrito pues… eso, por mi parte se queda en leyenda)

Para ampliar información:


El Nuevo Método Austríaco de Construcción de Túneles o NATM (1948-1964)

Considerado por algunos como una clasificación geomecánica más, toca hablar ya del Nuevo Método Austríaco de Construcción de Túneles, también conocido por las siglas NATM (New Austrian Tunelling Method).

En primer lugar se debe puntualizar que no se trata de un «método«, propiamente dicho, sino más bien de una «filosofía de actuación«, llegando a decir el propio Bieniawski en 1989 que «the word -method- in the english translation is unfortunate, as it has led to some misunderstanding”.

En segundo lugar hay que decir que lo de «Nuevo» es porque ya existía un Método Austríaco de construcción de túneles, como existen también el Método Alemán, el Belga o el Inglés, aunque el tema del nombre daría para mucho, ya que este método recibe diferentes nombres dependiendo de cuándo, dónde y quién lo use.

A lo que vamos, desarrollado y patentado (Patentschrift Nr. 165573, Österreichisches Patentamt) por Rabcewickz, Müller y Pacher entre 1948 y 1964, el método está basado en la clasificación geomecánica de Lauffer y en los trabajos teóricos de Fenner y Kastner (también austríacos), y consiste, en esencia, en comparar las curvas características del terreno con los resultados de la instrumentación in situ y estudiar cuál es el sostenimiento que puede funcionar mejor en cada caso.

A partir de este estudio se desarrollaron veinte principios fundamentales, siendo cinco los más importantes:

  1. Utilizar la propia roca como elemento resistente frente a los incrementos locales de tensión que se producen durante la excavación.
  2. Utilizar métodos de excavación que minimicen el daño producido al macizo, con gunitados de protección nada más excavar.
  3. Instrumentar las deformaciones en función del tiempo, con ayuda de clasificaciones geomecánicas y ensayos de laboratorio.
  4. Colocar sostenimientos iniciales flexibles, protegiendo el macizo de meteorizaciones, decompresiones, decohesiones, etc, con la velocidad adecuada, para evitar el comienzo de daños.
  5. Colocar el revestimiento definitivo, si es necesario, también flexible, minimizando así los momentos flectores, añadiendo resistencia adicional con cerchas o bulones, pero no con secciones rígidas.

¿Qué quiere decir todo esto, exactamente?

Pues que, sabiendo cómo se deforma teóricamente el macizo, durante la excavación se debe utilizar la instrumentación para comprobar si vamos bien o no y, de acuerdo con eso, ir dimensionando un sistema flexible de sostenimiento. Es decir, consiste en hacer las cosas con cuidado y bien de acuerdo a lo que vamos viendo, nada más que eso.

Lo bueno del método:

  • Es económico, un revestimiento flexible casi siempre es más barato que uno rígido.
  • Altera poco el terreno, lo cual viene bien a largo plazo.

Lo malo del método:

  • Exige un cuidado continuo, saber hacerlo bien, estar pendiente en todo momento a la instrumentación… y usarlo dónde toca, y eso suele excluir a los suelos blandos.

Como pasa siempre, el método tiene defensores y detractores y, por extraño que pueda parecer, todos tienen razón, el problema no es el método, sino usarlo mal, aunque según algunos esto no sea más que una mala excusa.

Puede que no existan las verdades absolutas, pero en cuestiones relacionadas con el terreno y la geotecnia, «lo barato sale caro» se aproxima mucho. Aceptar la oferta más barata sabiendo que no es la opción correcta no es ético, y menos todavía en suelos blandos en entornos urbanos, en los que tanto el riesgo como los posibles daños son muy elevados.

Algunos enlaces relacionados:


 

«Mecánica de Rocas Aplicada a la Minería Metálica Subterránea»

El libro que presento hoy lleva por título «Mecánica de rocas aplicada a la minería metálica subterránea» y, al igual que ya pasó con el Manual de Taludes, cambia entre ediciones, si el Manual de Taludes cambió de nombre (conservando el ISBN), este modificó su formato, eliminó un par de temas y, lo más curioso, cambió de autores.

Mecánica de Rocas Aplicada a la Minería Metálica Subterránea

Como su nombre indica, trata de mecánica de rocas y de minería metálica subterránea (más o menos al 50%), a lo largo de más de 300 páginas. Es un libro muy recomendable, con temas muy bien explicados (el de los criterios de rotura, por ejemplo) aunque en otros esté algo desfasado ya, como el de la clasificación geomecánica Q de Barton, más que nada porque el libro es de 1991 y Barton revisó su método casi por completo en 2002, en un completo artículo del International Journal of Rock Mechanics and Mining Sciences que figura entre los 10 más citados de dicha revista (en el momento de escribir esta entrada, septiembre de 2009).

El «Mecánica de rocas aplicada a la minería metálica subterránea» me costó lo mismo que el Manual de Taludes, 3.120 ptas (18,75 €). Su precio actual en el catálogo de publicaciones del IGME de 2009 (pdf) es de 12,50 €, mientras que el Manual de taludes vale 30 €… no tengo muy claro qué baremo usan para determinar los precios, la verdad.

La versión que dejo aquí no es exactamente la misma que hay en la web del IGME, he corregido un par de páginas que se habían ido de sitio durante el proceso de escaneado.

Mecánica de Rocas Aplicada a la Minería Metálica Subterránea

Mecánica de rocas aplicada a la minería metálica subterránea [pdf – 24 MB]

 

Por cierto, en el libro no queda muy claro de qué año es la Clasificación Geomecánica de Protodyakonov. Hace unos años hice un «estado del arte» de las clasificaciones geomecánicas y pude comprobar que es de principios del siglo XX, pero muchos textos (como este manual) la fechan en 1962, seguramente porque las fuentes originales están en ruso y son difíciles de encontrar. En fin, si alguien lo sabe le agradecería que me lo dijera.