Sobre clasificaciones geomecánicas, UnWedge, y la fórmula de Ünal para el cálculo de la carga sobre el sostenimiento en excavaciones subterráneas

«Un gran poder conlleva una gran responsabilidad.»

Stan Lee le robó la frase a F. D. Roosvelt, que al parecer la había tomado de Churchill, quien se habría inspirado en un colega, que su vez la había copiado de un discurso revolucionario francés, que resultó estar basado en un pasaje bíblico (concretamente Lucas 12:48), confirmando que lo de ser más responsable cuanto más poder se tiene viene de lejos, como es lógico.

(Y no se me ha ocurrido mirarlo, pero seguro que el código de Hammurabi incluye también algo parecido. Buscando bien, al final siempre aparece Mesopotamia. Siempre).

De vez en cuando, la ingeniería civil se plantea GRANDES OBRAS, en mayúsculas, obras que dada su poderosa envergadura, requieren muchas empresas distintas trabajando juntas, tanto en la fase de construcción como en diseño.

Y es precisamente esta «multiplicidad de cabezas pensantes» en el diseño la que obliga a hacer revisiones externas independientes del proyecto, no sea que algo no encaje o, peor todavía, haya pasado desapercibido.

Por la responsabilidad, claro.

Pues bien, hace poco, revisando el diseño más importante que jamás he tenido entre manos (dudo mucho que lo supere, las cosas como son… pero me encantaría, ¡¡ para qué negarlo !!) me encontré con algo que ya he visto otras veces (vamos, que lo iba buscando, que uno ya es perro viejo).

Podría estar refiriéndome al hecho de que haya ocho versiones del RMR y nadie diga cuál usa ☹, pero no, estoy hablando de la fórmula de Ünal para el cálculo de la carga sobre el sostenimiento o rock load, muy útil también para saber el tamaño de las posibles cuñas.

Y como el tema es árido, voy a dividirlo en 10 preguntas y respuestas, a fin de hacerlo algo más asequible (si es que eso es posible).

1) ¿Qué es la carga sobre el sostenimiento?

La razón de ser de (casi) todas las clasificaciones geomecánicas para túneles, y aunque ya he hablado muchas veces sobre el tema (aquí sobre la clasificación geomecánica de Protodyakonov de ~1930, aquí sobre la de Terzaghi de 1946, aquí sobre la de Lauffer de 1948, aquí sobre el NATM y aquí sobre más cosas), voy a volver a explicarlo, por si hay dudas.

Y porque soy un pesado.

Cualquiera que haya jugado a excavar un túnel en un montón de tierra sabe que el terreno siempre se desmorona un poco. Si lo hacemos a poca profundidad se desmorona del todo y se derrumba (o colapsa), pero dependiendo del tamaño del hueco, el tipo de «tierra» (no es lo mismo arena que arcilla) y el espesor por encima de la «excavación», llega un momento en que cae algo de material pero nuestro túnel se mantiene estable… al menos por algún tiempo.

Este sería el concepto, grosso modo, pero en roca.

De forma MUY SIMPLIFICADA podríamos explicarlo diciendo que, conforme vamos excavando, parte del terreno más próximo a la excavación se «afloja» y cae, y otra parte «sufre» una redistribución de tensiones, entra en comportamiento plástico y se deforma hasta llegar (con suerte) a una especie de curva de equilibrio. Si no llega al equilibrio colapsa todo, evidentemente.

(Vale, esto no es exactamente así. Y ahora podría hablar sobre el efecto arco, el efecto silo y la trapdoor y tendríamos para rato. Acabaría antes grabando un vídeo, la verdad.)

Lo que queremos saber es cómo, cuánto y cuándo se va a aflojar el terreno.

Lo que no sabemos es cómo calcularlo:

«Debido a que el proceso de aflojamiento puede ocurrir en tramos del túnel que no pueden ser determinados con anticipación y es influenciado por factores incontrolables, no parece posible una predicción al respecto. Terzaghi, 1968»

Hay soluciones matemáticas analíticas, por supuesto, pero requieren demasiadas simplificaciones, de esas que nunca se dan en el Mundo Real. Como digo en Twitter: el terreno homogéneo es la vaca esférica de la geotecnia.

También se puede estudiar numéricamente, con resultados cada vez mejores, pero sigue habiendo demasiadas variables en juego. Como se suele decir, «en los túneles en roca lo importante es lo que no es roca».

De ahí que sigamos usando las clasificaciones geomecánicas: métodos empíricos simplificados que permiten clasificar o tipificar el problema en función de las características del terreno y las dimensiones de la excavación.

Así podemos saber (de forma aproximada) cuánto tiempo puede mantenerse en pie la excavación (stand-up time) y qué espesor de terreno va a aflojarse y quedar suelto antes de alcanzarse esa curva de equilibrio, lo que nos permitirá calcular el peso de terreno que va a cargar sobre el sostenimiento* (rock load), dimensionar éste para que aguante sin problemas y, lo más importante, saber cuánto tiempo tenemos para colocarlo.

* Algunos textos llaman a este peso «carga de aflojamiento».

Este es el esquema que dio Terzaghi del perfil final de la excavación en función de su estratificación, tal y como viene en el enciclópedico «Art of tunelling» de Karoly Szechy.

Y, aunque no es exactamente lo mismo, hace unos meses retuiteé esta noticia de la caída de un arco de sillería en la que se puede ver cómo los bloques que siguen en su sitio forman un arco parabólico, de acuerdo a la clasificación geomecánica de Protodyakonov (esto es muy típico en las patologías de dinteles).

 

2) ¿De qué hablamos cuando hablamos de «caída de cuñas»?

En principio, de geometría. Después ya veremos que la cosa se complica un poco más.

Tenemos:

  1. un macizo rocoso,
  2. una serie de planos de discontinuidad que lo cortan y «compartimentan» en bloques,
  3. una excavación, llámalo túnel, galería, caverna, etc.
  4. y agua, sismos y un montón de cosas más que no voy a considerar hoy

La perforación va a cortar esos bloques, generando una serie de cuñas sueltas que caerán o no dentro de la excavación dependiendo de la relación de tamaños. Si el hueco de la perforación es lo suficientemente grande o las cuñas lo suficientemente pequeñas, éstas caerán dentro. Si no, se reajustarán y se mantendrán en su sitio. Así de simple.

Este es el esquema que siempre se pone de ejemplo para explicar este tema (el original está en el «Underground Excavations in Rock», de Hoek & Brown, pero he preferido coger la versión del «Rock Mechanics for Underground Mining» de Brady & Brown, algo más actualizado.

Como se puede ver, los túneles pequeños tienen menos problemas, al estar afectados por menos discontinuidades (si Elon Musk quiere tuneladoras pequeñas es por algo) mientras que los túneles grandes se comen todos los problemas.

Por eso llega un momento en que, dependiendo del tipo de terreno, puede ser mejor hacer dos túneles gemelos pequeños antes que un único túnel de mayor diámetro.

Y también es una de las razones por las que los récords de túneles más largos corresponden a túneles hidraúlicos, porque al tener un diámetro menor son más fáciles de construir (bueno, y que llevar agua en vez de gente también es más fácil, las cosas como son).

 

3) ¿Qué hacemos con las cuñas?

Sujetarlas, siempre que sea posible, ya sea con bulones/pernos, hormigón proyectado (gunita o shotcrete), cerchas o todo a la vez. Pero para eso primero necesitamos saber sus dimensiones y tener así una idea aproximada de su peso.

Como he dicho antes, el cálculo de cuñas es pura geometría, muy liosa, pero geometría, al fin y al cabo. Las fórmulas están disponibles en bastantes textos, aunque el libro por excelencia es el «Block Theory and its application to Rock Engineering», de Goodman & Shi, publicado en 1985 (disponible aquí en pdf).

A día de hoy, el programa más usado para el cálculo de cuñas es el UnWedge de Rocscience, también basado en la teoría de bloques de Goodman (de hecho, el libro está disponible en la web de Rocscience).

Sigamos. En teoría, a estas alturas deberíamos tener un buen reconocimiento geotécnico del macizo, tanto de la roca (estado, dureza, composición, alterabilidad, etc.) como de sus discontinuidades (dirección de buzamiento, buzamiento, espaciamiento, persistencia, rugosidad, etc.).

Sabemos la orientación del túnel y su geometría. Hemos identificado las familias de discontinuidades más representativas y conocemos su buzamiento y dirección de buzamiento. Lo tenemos todo. Le damos los datos al programa, hace sus cálculos y nos da las cuñas más desfavorables. Le indicamos el tipo de sostenimiento que queremos usar (bulones o pernos, gunita o shotcrete, cerchas) y nos dice lo que debemos poner.

Y ya está.

 

4) Si el UnWedge ya lo hace todo, ¿para qué necesitamos más fórmulas?

Porque el UnWedge busca la mayor cuña posible atendiendo únicamente a criterios geométricos, sin tener en cuenta la geotecnia para nada (cual político español, mismamente).

Por suerte, los programadores lo han tenido en cuenta y nos dejan corregir los resultados. La opción se llama «UnWedge Scaling»:

«UnWedge always initially calculates the maximum sized wedges which can form around an excavation. Wedge scaling is important because the assumed wedge size can have a significant effect on support requirements (e.g. pattern spacing, positioning or orientation of bolts, and the thickness or strength of shotcrete).

The Scale Wedges option allows you to scale down the size of the wedges, according to actual field observations (e.g. observed joint trace lengths, persistence, wedge volume, etc.). »

Es en este «escalado» dónde podemos usar la fórmula de Ünal para afinar los cálculos y obtener un resultado más acorde a la realidad.

Nota: Este post está escrito en febrero de 2020, con el tiempo igual cambian esta opción y ya no aparece. Hoy por hoy, está ahí.

 

5) Vale, entendido. ¿Y qué le ocurre a la fórmula de Ünal?

Pues que las fórmulas también tienen sus modas. Alguien empieza a usar una, los demás la ven, se pone de moda y, de repente, la ves por todas partes: copiada, pegada, citada, a pie de página y en la bibliografía, en letras diminutas.

Y con tanto copia-pega, muchas veces se olvida añadir su rango de validez, cuando no se hace de forma intencionada.

Así aparece la fórmula en el «Engineering Rock Mass Classifications» de Bianiawski de 1989:

Entra por los ojos, ¿verdad? Conocido el RMR es tan fácil de usar como rápida, sólo tenemos que dividir por la densidad y ya tenemos la altura/espesor de material que va a aflojarse durante la excavación.

Y conocido el espesor ya sabemos qué carga va a soportar el sostenimiento. Genial, ya podemos dimensionarlo.

Sólo hay un pequeño problema…

Esta fórmula es para sostenimientos de techos planos estratificados en galerías de carbón.

Es decir, para esto:

Y a veces (muchas otras veces) lo que tenemos es esto:

(estas dos figuras están tomadas del Manual de Geomecánica Aplicada a la Prevención de Accidentes por Caída de Rocas en Minería Subterránea)

Así es, se trata de una fórmula para minería, sacada de una tesis publicada en 1983 en la Pennsylvania State University con el título de «Design guidelines and roof control standards for coal mine roofs«, por Erdal Ünal.

Vamos, que la fórmula es correcta, pero con matices… porque los techos planos estratificados en carbón no son lo más habitual en ingeniería civil, las cosas como son.

Que no se me olvide decir dos cosas aquí:

Lo primero: El RMR a usar en la fórmula es el RMR89. Por las fechas es de suponer que Ünal hizo su tesis con las versiones del RMR de 1973, 1974, 1975 o 1979, pero la versión recomendada para esta fórmula es la de 1989, alias RMR89.

Por si alguien se lo está preguntando (que sé yo, hay gente muy rara) la última publicada es la RMR14.

Y lo segundo: En este texto Bieniawski indica que su autor es Ünal, pero en otros lo omite, lo que explica que muchos textos posteriores le atribuyan esta fórmula al propio Bieniawski, entre ellos el «Ingeniería Geológica» de González de Vallejo et al.

 

6) ¿Y nadie se ha dado cuenta?

La mayoría de textos se limitan a copiar y pegar la fórmula, sin más detalles, pero otros son más críticos:

Singh & Goel dicen en varios de sus libros (éste, éste, y éste) que la fórmula:

  • Infradimensiona la carga en túneles en roca con techo curvo
  • Infradimensiona la carga en terrenos con problemas de squeezing (fluencia), sea cual sea el diámetro
  • Infradimensiona la carga para diametros <6 metros (no-squeezing)
  • Sobredimensiona la carga para diámetros >9 metros (no-squeezing)

Y en España, en su libro de «Clasificaciones Geomecánicas«, Manuel Romana advierte sobre la falta de homogeneidad dimensional de la fórmula y su gran dispersión de resultados, recomendando no usarla.

(No puedo poner ningún enlace a este libro porque está más que descatalogado. Fue una edición limitada para un curso realizado en la UPV en el 2000, editado por el prof. José B. Serón y aquí un servidor.)

He de decir que recuerdo haber leído esta misma recomendación en algún artículo anterior de D. Manuel Romana pero no lo he encontrado mientras escribía esto.

 

7) Pero esta fórmula es de 1983, ¿no hay nada posterior?

Si. Entre 1986 y 2002, Ünal publicó una serie de artículos en los que propuso usar un RMR modificado, al que llamó Modified Rock Mass Rating o M-RMR.

Ojo, no confundirlo con el MRMR (Mining Rock Mass Rating) de Laubscher, ese es otro.

Es un jaleo, lo sé.

El M-RMR tenía algunas cosas interesantes, como parámetros adicionales para tener en cuenta macizos rocosos de mala calidad, zonas con planos de debilidad, meteorizadas o muy fracturadas, e incluso un factor corrector por los efectos de la voladura, pero entre 1994 y 1997 Hoek presentó su GSI —que hace casi lo mismo— y se llevó el gato al agua.

Adaptarse o morir. En 2005, admitiendo de partida que el GSI de Hoek es bastante subjetivo (cosa que comparto), Osgoui & Ünal publican un artículo con el título de «Characterization of weak rock masses using GSI and the estimation of support pressure« en el que actualizan la fórmula, verificando los resultados (in-situ y con simulaciones numéricas), y dicen que «The main advantage of this new approach lies in the fact that it is applicable to overstressed and squeezing rock mass«. Algo es algo.

Unos años después, en 2009, los mismos autores publican «An empirical method for design of grouted bolts in rock tunnels based on the Geological Strength Index (GSI)« y aquí presentan esta nueva fórmula:

Que si sólo queremos saber la altura de terreno suelto, se queda en:

Hoy por hoy, que yo sepa, esta es la fórmula más actualizada, up-to-date, state-of-the-art, etc. de estos autores para calcular el espesor de terreno suelto que va a cargar sobre el sostenimiento.

En el artículo está todo explicado y podéis ver en qué consiste cada parámetro. No tiene mucho sentido repetirlo aquí.

Supongo que no hace falta que lo diga, pero si, la que más se ve en los proyectos es la de 1983, que puede que no sea del todo correcta, pero es más fácil, y ya se sabe que al final lo fácil es lo que triunfa.

 

8) ¿Y no hay más fórmulas?

Si, claro, no es el propósito de este post pero haberlas haylas. Tienes las antiguas recomendaciones de la clasificación geomecánica de Terzaghi (muy anticuadas ya, no recomendables); Bieniawski tiene alguna más; están también las de la clasificación Q; y Singh & Goel citan esta que pongo aquí abajo, de Goel & Jethwa, en los libros que he mencionado antes. Hay donde elegir.

 

9) ¿Podemos fiarnos de este tipo de fórmulas?

A ver, las clasificaciones geomecánicas son muy útiles para tener una idea previa de lo que nos podemos encontrar y para verificar resultados y poder elegir entre los distintos sostenimientos recomendados en el proyecto, pero no debemos olvidar que son planteamientos empíricos… cuánto más nos alejemos de las condiciones en las que se obtuvo la clasificación, menos «fiable» será… y esto va por las galerías en carbón con techo plano estratificado, por supuesto.

En general, y en comparación con otras disciplinas, las incertidumbres que manejamos en ingeniería civil son tan diversas que yo no hablaría de fiabilidad, sino de pragmatismo. Y aquí uso la palabra pragmatismo en su sentido estricto.

Utilizamos fórmulas y principios matemáticos hasta dónde es posible; modelización numérica un poco más allá; reglas empíricas (clasificaciones geomecánicas y correlaciones locales) cuando nos faltan datos; soluciones que sabemos que han funcionado (aunque a veces no sepamos muy bien cómo) cuando no nos queda otra opción; y siempre, por encima de todo, debe estar el Método Observacional.

Aun así, a veces no podemos evitar acordarnos de Marx (Chico) y su «¿A quién va usted a creer, a mi o a sus propios ojos?» cuando la cosa no sale como toca, a pesar de los decimales y los elementos finitos, pero es lo que tiene el Mundo Real… un sentido del humor muy peculiar.

Y luego están los túneles.

Entre nosotros, el proyecto lo ha hecho alguien desde su despacho, pero quien está hasta arriba de barro eres tú, así que… cuántas más recomendaciones, tablas y esquemas tenga el proyecto, mucho mejor, tendrás dónde apoyarte… porque al final, el proyecto de un túnel, citando al capitán Barbosa, «son más bien unas directrices«.

 

10) ¿Y cómo lo hacían en el proyecto que estabas revisando?

Tsk, tsk, tsk. No confundamos el sujeto con el objeto. He dicho que encontré lo que iba buscando, pero no he dicho qué iba buscando. Tenemos una ética profesional y manejamos información privilegiada. Seriedad.

 

P.D. Estaba todo perfecto, como cabía esperar.

Pero había que comprobarlo.

(no es porque me paguen por hacerlo, es que debe hacerse, nosesimexplico)

Nuevo libro: «Manual de estaciones geomecánicas. Descripción de macizos rocosos en afloramientos»

Lo avisé en la última entrada, el próximo libro estaría dedicado a las estaciones geomecánicas. Bien, helo aquí, se titula «Manual de estaciones geomecánicas» y está escrito por Luis Jordá, Roberto Tomás, Manuel Arlandi y Antonio Abellán.

Como sabéis, cuando reseño o anuncio libros en el blog trato de ser imparcial. Si algo me gusta, lo digo, y si algo no me gusta, también lo digo (explicando por qué, eso si, que criticar es fácil).

Bien, pues con este libro voy a ser parcial, lo aviso desde el principio, básicamente porque los autores son amigos, me han enviado una copia firmada y dedicada (saben que me gustan esas cosas), salgo en la bibliografía y hasta me nombran en los agradecimientos. Vamos, que podría decir que soy imparcial, pero no me ibais a creer, ¿a que no?

Supe de la existencia de este libro (en aquel momento todavía un índice) en verano de 2013, en Perú, tomando una Cusqueña con el primer autor. Lo cierto es que ya lo había olvidado, y aunque hace unos meses estuve con el segundo autor (esta vez fue una Mahou, en Madrid), ni se me pasó por la cabeza preguntar, y resulta que ya estaba acabado.

Como su nombre indica, se trata de un completo Manual de estaciones geomecánicas para la descripción de macizos rocosos en afloramientos. Busca ser eminentemente práctico y gráfico, y creo que consigue ambas cosas. ¿Es gratuito?, no, cuesta ~30 €, ¿recomiendo su compra?, si, ¿por qué?, sigue leyendo

manual-estaciones-geomecanicas

Los autores tenían el listón muy alto, porque ya había un libro en español de esta temática. En 1978, tratando de normalizar la manera de tomar datos de campo, la International Society for Rocks Mechanics (ISRM) publicó los «Suggested methods for the quantitative description of discontinuities in rock masses«. En 1999, el IGME tradujo parte del texto del ISRM, añadió un montón de fotografías con ejemplos y publicó su «Manual de campo para la descripción y caracterización de macizos rocosos en afloramientos«. Por cierto, siendo Luis González de Vallejo uno de los editores, el libro incluía su clasificación geomecánica, la SRC, tengo pendiente hablar sobre ella, algún día.

La idea de partida de este nuevo libro era hacer «una herramienta de consulta rápida» en la que estuvieran incluidas todas las tablas, gráficas y esquemas necesarios para hacer una estación geomecánica. Esto no quiere decir que te puedas plantar delante de un talud con este libro y hacer una estación geomecánica. Hay que tener una serie de conocimientos previos, pero todo lo demás está aquí (salvo, quizás, un estadillo o planilla para tomar notas).

Cuando llegó a mis manos no tenía ni idea de que el prólogo fuera de D. Manuel Romana, pero bastó empezar a leerlo para reconocer su estilo. Además menciona algo que estuvimos comentando, en petit comité, durante la Jornada 2016 de la Sociedad Española de Mecánica de Rocas, si en el futuro se seguirán haciendo estaciones geomecánicas como hasta ahora. Contesta D. Manuel que si y no, porque «el proceso de captación de datos se automatizará y mecanizará«.

Coincido, los nuevos métodos van a permitir extraer muchísima más información del macizo (el cuarto autor es un experto en el tema), y en mi opinión, en ese momento será más necesario que nunca saber hacer e interpretar los datos de una estación geomecánica, porque el día que se automatice el proceso pasará lo que ya ha ocurrido con otras áreas de la geotecnia… que veremos datos completamente imposibles justificados con «pues es lo que ha salido», y si en mecánica de suelos es peligroso, en rocas ya ni os cuento.

A fin de ser lo más completo posible, el libro se explaya bastante en la descripción de las discontinuidades, tratando con detalle brújula, esclerómetro, perfilómetro, JRC, ensayos de carga puntual, RQD, efecto escala, etc.

Por cierto, la foto del perfilómetro de la pág. 104 es de un servidor y ya había salido en el blog. El texto no lo indica pero está tomada en Jávea, Alicante, el día de la final del Mundial de Sudáfrica de 2010. A mi el fútbol me da igual, pero a los sondistas no, por eso recuerdo qué día era.

Dada la importancia de las estaciones geomecánicas en los túneles, el quinto y último capítulo (coordinado por el tercer autor, supongo) está dedicado al levantamiento de frentes de excavación. El libro concluye con cuatro apéndices dedicados a las clasificaciones geomecánicas más utilizadas: RMR de Bieniawski, SMR de Romana, Q de Barton y RMi de Pälstrom, aunque lo cierto es que las clasificaciones geomecánicas se mencionan en varios puntos del texto (muy interesante la comparativa pros-contras de cada una de ellas del apartado 5.5.1).

Para finalizar, que esto ya está quedando demasiado largo, creo haber encontrado una diminuta errata (bueno, yo lo llamo errata, mi chica lo ha definido como «frikada nivel 15»). En la página 72 se dice que el sistema Clar o brújula de cuadrantes «resulta más complejo y menos adecuado para los fines con los que se hace uso de la brújula en mecánica de rocas». Sin embargo, en la página 159 los autores se decantan por la brújula Freiberger.

Coincido al 100%, yo también tengo una Freiberger, aunque hay algo que no cuadra. La empresa VEB Freiberger Präzisionsmechanik (ahora FPM Holding GmbH) lleva años fabricando instrumental técnico en colaboración con la Escuela de Minas de Freiberg, la más antigua del mundo. Entre otros aparatos, fabrica las llamadas «brújulas tectónicas», con las que es posible medir dirección de buzamiento y buzamiento al mismo tiempo… de acuerdo al artículo de 1954 del profesor Eberhard Clar, de la universidad de Viena. Si, la brújula Freiberger es una Clar (de hecho, lo indica en las instrucciones).

Dicho todo esto, espero que esta reseña os sea útil. Si alguien quiere comprarlo, puede hacerlo en Amazon (estará disponible en unos días, hay que apuntarse a la lista de espera).

Eso es todo. Hasta la próxima.

Santamarta & Hernández: «Ingeniería Geológica en Terrenos Volcánicos»

Métodos, Técnicas y Experiencias en las Islas Canarias

He de hacer uso del buscador para recordar cuando nombré por última vez los terrenos volcánicos. Hay dos apariciones. La primera es de hace mucho tiempo, en una entrada eliminada (el lunes que viene lo explico) en la que señalaba la escasa atención que les prestaba la normativa geotécnica estatal. La última aparición es de septiembre de 2013, en un libro de Juan Carlos Santamarta.

Bien, pues hay novedades al respecto, y casi de los mismos autores, además, porque son Juan Carlos Santamarta y Luis Enrique Hernández los que, como coordinadores, encabezan este archivo de 434 páginas que se colapsó el día que se anunció en twitter. Y no exagero, el primer autor me tuvo que enviar un enlace por correo porque me quedé sin copia.

Santamarta & Hernández: "Ingeniería Geológica en Terrenos Volcánicos"

Mucha gente ha participado en su redacción (24 autores, para ser exactos), lo que hace que sus 15 capítulos abarquen un montón de temas distintos.

Por aquello de la deformación profesional, como ingeniero prefiero los capítulos más geotécnicos, como los de clasificaciones geomecánicas (3), problemas geotécnicos en obras de captación de aguas (7), la restauración de la bóveda del auditorio de Los Jameos del agua (10), el de metodología de diseño de muros de gravedad con anclajes pasivos (12) o los dedicados a estabilización y saneamiento (14 y 15), aunque debo reconocer que el que más me ha gustado ha sido el dedicado a las infraestructuras marítimas (8).

Puedes descargar el libro pulsando en el icono inferior, esta vez sin problemas gracias a la nueva sección de Descargas de la Sociedad Española de Mecánica de Rocas.

Santamarta & Hernández: Ingeniería Geológica en Terrenos VolcánicosSantamarta & Hernández: «Ingeniería Geológica en Terrenos Volcánicos» (70 MB)

«Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes»

Libros de mecánica de suelos hay muchos, tanto de teoría como de problemas. Libros de mecánica de rocas ya no hay tantos, y si hablamos de problemas, el número todavía se reduce más, mucho más, de hecho, ahora mismo sólo me viene a la cabeza el completo segundo tomo («Illustrative Worked Examples«) del «Engineering Rock Mechanics«, de Harrison & Hudson.

Bien, pues tenemos un nuevo libro de problemas de mecánica de rocas que añadir a esa lista, en castellano y de libre acceso, por cortesía de la Sociedad Española de Mecánica de Rocas, que ha alojado el archivo en su nueva sección de descargas.

Vamos, que todo son ventajas.

problemas-mecanica-rocas-portada

«Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes» está escrito por Javier Arzúa, Leandro Alejano e Ignacio Pérez-Rey, de la E. T. S. de Ingeniería de Minas de Vigo. El libro recopila los problemas de la asignatura de los últimos años, tiene 44,8 MB, 312 páginas y está bastante bien, así que ya tardáis en descargarlo si os interesan estos temas.

Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes (44,8 MB)

Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes (44,8 MB)

El único punto negativo es que algunos esquemas no se ven del todo bien, un problema muy habitual al insertar figuras en los archivos pdf. No termino de estar muy de acuerdo con la introducción, cuando dice que la Mecánica de Rocas debería denominarse, más rigurosamente, Ingeniería de los Macizos Rocosos. En mi opinión, Mecánica de Rocas es un término lo suficientemente descriptivo y conciso, pero para gustos, colores, claro.

Por cierto, este libro complementa un primer tomo, de teoría, de (casi) los mismos autores. Tengo pendiente reseñarlo por aquí desde hace un montón de tiempo. Un día de estos lo hago, prometolo 🙂

5ª ISRM Online Lecture: «Implementing a Reliable Slope Design», por John Read

Tenemos nueva conferencia online de la Sociedad Internacional de Mecánica de Rocas, y ya van cinco. Se emitió el pasado jueves 10 de abril y lleva por título «Implementing a Reliable Slope Design», lo que se podría traducir, maomeno, en «Cómo Implementar un Diseño de Talud Realista» (ese gerundio inglés, siempre tan polivalente).

El autor es el Dr. John Read, ingeniero geólogo con más de 40 años de experiencia en estabilidad de taludes, especialmente taludes de gran tamaño en minas a cielo abierto. Desde 2004 dirige el proyecto Large Open Pit Slope Design (LOP) en CSIRO (Commonwealth Scientific and Industrial Research Organisation), organismo en el que ha editado las completas «Guidelines for Open Pit Slope Design» y «Guidelines for Evaluating Water in Pit Slope Stability«.

La conferencia está bastante bien, sobre todo cuando explica cómo escoger datos fiables y los «Do’s y Don’ts in the Slope Design» (a partir de 29:10) aunque tiene demasiado texto, en mi opinión. Creo que con más fotos y esquemas, al estilo de las guidelines, hubiera quedado mejor. Dura algo menos de 40 minutos, pesa 100 MB y al principio la voz suena un poco metálica, pero en seguida se arregla.

Pulsa en la imagen para ver la 5ª ISRM Online Lecture:

5ª ISRM Online Lecture: «Implementing a Reliable Slope Design», por John Read

 

Os recuerdo que las cuatro conferencias anteriores sobre el Nuevo Método Austriaco (Prof. Wulf Schubert), «Solving the Unsolved Problems in Rock Mechanics and Rock Engineering» (Prof. John Hudson), «Rock Mechanics Lessons from Dams» (Dr. Pierre Duffaut) y el Deslizamiento de Vajont (Prof. Eduardo Alonso) están también en el blog.

(la conferencia de Eduardo Alonso ha desaparecido del listado de Lectures Online de la web del ISRM pero el enlace funciona sin problemas, debe ser un error)