Nueva edición del «Basics of Foundation Design» de Bengt Fellenius

(Post actualizado con la versión de abril de 2015)

Tenemos nueva versión del «Red Book Basics of Foundation Design», de Bengt H. Fellenius, rebautizado desde hace ya algunos años como «Basics of Foundation Design».

Basics of Foundation Design - Bengt Fellenius

Hay bastantes cambios. En esta edición el libro tiene 433 páginas, unas 40 más que en la anterior. El capítulo que más se ha actualizado es el dedicado al ensayo CPT, una asignatura pendiente por estos lares, en los que sacas a la gente del SPT y se pone muy nerviosa. Evidentemente el CPT es más caro, no hace falta que me lo cuenten, lo he sufrido, pero en determinados suelos no se puede hacer otra cosa, es lo que hay.

Basics of Foundation Design - Bengt Fellenius

 

Si alguien se está preguntando si Bengt Fellenius tiene alguna relación con Wolmar Fellenius, el del famoso «método sueco» de cálculo de estabilidad de taludes, de 1920, le puedo contestar que si, es su nieto (dejó Suecia y se fue a «hacer las Américas»).

Bengt Fellenius & Wolmar Fellenius

Por cierto, si alguna vez has dudado del concepto de «profundidad crítica» en la resistencia por fuste de pilotes en suelos granulares, el también llamado «efecto Kerisel», no eres el único, Fellenius, junto a Kulhawi o Vesic, es de esos que piensan que no existe tal efecto, y que todo es culpa del aparato de medida (aunque tampoco terminan de aclararse entre ellos, tienen ideas muy distintas).

¿Es correcto seguir usando el SPT?

El ensayo de penetración estándar o SPT (Standard Penetration Test) es el ensayo de penetración dinámica más usado en todo el mundo, y también el más antiguo, porque el modelo que usamos ahora es de 1927, pero las primeras versiones datan de 1902, nada menos.

Normalmente, si algo se mantiene durante tanto tiempo es, o bien porque su exactitud no ha sido superada, que no es el caso, o porque es barato y fácil de hacer, que sí es el caso.

El SPT tiene muchos defectos, la muestra está alterada, sólo sirve para hacer granulometrías, humedades y límites, los golpeos no son válidos en materiales cohesivos y cabe preguntarse hasta qué punto cumple con las normativas modernas.

En su defensa, hay que reconocer que tiene tras de sí un bagaje de muchos años, lo que se traduce en mucha información disponible, por no hablar de las famosas correlaciones del SPT, busques lo que busques, por raro que sea, alguien habrá obtenido una correlación con el SPT.

¿Qué lo mantiene en vigor?

  • El precio (a 15 euros lo he llegado a ver, últimamente)
  • Su facilidad de ejecución (cualquiera puede hacerlo)
  • La «conveniente» alteración de la muestra (es genial, no hay manera de saber si el ensayo se ha hecho bien o mal… ni tan siquiera si se ha hecho o se ha «inventado»)
  • Y, como no, el número de golpes, un valor de resistencia tan inmediato, que ya no requiere más cálculos, cualquiera puede interpretarlo, hasta el sondista.

Ese es justamente el problema del SPT, su versatilidad, si ya sirve para todo, ¿para qué hacer más ensayos?, ¿qué más da que no sea exacto?

¿Balasto o vía en placa?, ¿qué es mejor?

Escribo esto a mediados de agosto de 2009. Una vez más, una ¿extraordinaria? avenida de aguas de escorrentía ha paralizado medio país, en otras ocasiones ha sido una autovía, esta vez le ha tocado al tren, la cuestión es que seguimos igual, y es que las lluvias extraordinarias son como los partidos del siglo, se repiten tres veces al año… son así de imprevisibles, ¿qué le vamos a hacer?

¿Cuál ha sido el problema?, ¿el hidrograma?, ¿el proyecto?, ¿la ejecución?

No se sabe, todavía no hay datos fiables, pero los tertulianos de la tele, todos ellos «ingenieros de trenes», claro, se han enfadado mucho con eso de que la vía estuviera apoyada sobre un montón de piedras sueltas, «con razón se las ha llevado el agua» decía esta tarde uno con cara de listo, «pero si son simples piedras, ¡¡ que pongan hormigón !!» (y luego dicen que somos los ingenieros los que ponemos hormigón en todas partes).

En cualquier caso, ¿hubiera evitado eso el desastre…?

Pues depende de lo que hubieran hecho, pero dudo que el tertuliano sepa que ha nombrado lo innombrable en el AVE, la vía en placa de hormigón, algo que se lleva pidiendo muchos años y se concede con cuentagotas.

El problema principal de la vía en placa es el precio de partida, ante la dicotomía ¿hacemos trenes buenos, rápidos y duraderos, aunque nos cuesten un pastón al principio?, o ¿hacemos algo barato, que no corra tanto y tenga que repararse todos los años, y el siguiente que se apañe, que igual ya no es «de los nuestros»?, la solución escogida es (casi) siempre la misma, hacer lo más barato y echar balones fuera si alguien pregunta por esos electorales 400 km/h.

¿Realmente es más cara la vía en placa?

Si. Las cosas como son. La placa es un elemento rígido, y si se deforma, se parte. Hay que hacerla muy bien, no tolera errores.

Es decir, que habría que hacer terraplenes de menor espesor y mejores cimentaciones… con lo que gusta en este país el movimiento de tierras y decir que la culpa es del terreno y que eso de la geotecnia es un camelo, vamos listos.

El relieve español es muy particular, y aunque siempre se pone el mismo ejemplo, el de la línea París-Madrid, no por repetido deja de ser descriptivo. Los franceses lo tienen fácil, todo llano, pero aquí, queramos o no, tenemos que hacer túneles y terraplenes para pasar de un lado al otro. Como es lógico, para disminuir el espesor del terraplén hay que bajar la cota del túnel y hacerlo más largo, pero los túneles son caros, problema a la vista.

[si, claro, se pueden hacer terraplenes que no asienten… y edificios de Calatrava a precio fijo, por pedir que no falte]

Revisando muy por encima lo que se ha escrito sobre el tema en la Revista de Obras Públicas en los últimos veinte años, encontramos sólo un artículo en contra de la vía en placa, y entre los autores más a favor, a Manuel Melis, al que algún día tendrán que dar la razón públicamente, vamos, digo yo.

Veamos los resúmenes de la Revista de Obras Públicas (con enlaces al pdf del artículo completo):
__________________________________________________________
1991 – La superestructura de vía sin balasto: Perspectivas de su aplicación en las nuevas líneas de alta velocidad – Estrade Panades, Joan Manuel [pdf]
Se analiza el futuro de la superestructura de vía sin balasto o vía en placa, partiendo de las últimas aportaciones e investigaciones desarrolladas, y se estudia la conveniencia de su posible aplicación en las futuras líneas a construir en nuestro país.
__________________________________________________________
1998 – La superestructura de vía en placa en las nuevas líneas de alta velocidad de nuestro país – Estradé Panadés, Joan Manuel [pdf]
La superestructura de vía en placa se ha utilizado de forma generalizada en las líneas japonesas de alta velocidad. La reciente decisión alemana de instalar este tipo de vía en todas sus nuevas líneas de alta velocidad ha puesto de actualidad su aplicación en el resto de Europa. En el presente artículo planteamos su instalación en las nuevas líneas españolas de alta velocidad (Madrid-Barcelona-La Jonquera, «Y» Vasca y Madrid-Valladolid). Para ello partimos de la situación actual de los principales países europeos. Analizamos la problemática de la vía en placa y los límites que podrían condicionar su utilización generalizada, reflexionando especialmente sobre su rentabilidad. Finalmente, definimos las situaciones en las que resulta aconsejable su utilización en las nuevas líneas a contruir en nuestro país.
___________________________________________________________
1998 – La «vía en placa» en la DB AG – Escolano Paul, José [pdf]
Los estudios realizados por la DB AG en los últimos años de la década de los sesenta, mostraron que la superestructura tradicional en la vía, parejas asentadas sobre balasto, había alcanzado su límite cuando la marcha de los trenes superaba los = 160 km/h. Ello dio lugar a un nuevo concepto y modelo de superestructura que designaron con el nombre de «Feste Fahrbahn» (FF). La FF (vía en placa) para que pueda ser considerada como alternativa, rentable económicamente, de la vía tradicional, debe alcanzar una vida útil larga, semejante a la de los puentes. Esto exige el empleo de estructuras suficientemente ensayadas y procesos constructivos sin fallos y con efectivo control. LA DB AG, basándose en los buenos resultados obtenidos en el tramo de ensayo de la estación de Rheda -1972-, ha puesto en servicio durante los últimos años diversos tramos, en líneas en explotación, con este nuevo concepto de superestructura.
__________________________________________________________
2000 – Para altas velocidades ¿Vía con o sin balasto? – Puebla Contreras, Javier y otros. [pdf]
En el presente artículo se intenta reavivar el debate sobre la utilización de vía con y sin balasto. La decisión de instalación de vía sin balasto se fundamenta en aspectos técnicos, funcionales y económicos. Aspectos técnicos como el soporte y reparto de cargas a la plataforma, la utilización de elementos de altas calidades en cada caso; funcionales de adaptación a la geometría de las líneas; y económicos, relacionados con el binomio inversión-mantenimiento.
__________________________________________________________
2001 – La rigidez vertical de la vía y el deterioro de las líneas de alta velocidad – López Pita, Andrés [pdf]
El presente artículo efectúa una serie de reflexiones sobre algunas posibles formas de limitar el deterioro de las vías en líneas de alta velocidad, y, por tanto, de reducir el coste de su mantenimiento. El ámbito de referencia en que se sitúan las reflexiones que se exponen, es el de la rigidez vertical de la vía.
__________________________________________________________
2006 – Terraplenes y balasto en Alta Velocidad Ferroviaria [1ª parte] – Melis Maynar, Manuel [pdf]
Igual que una manguera que lanzara aire a 350 km/h, el tren a Alta Velocidad levanta el balasto, que vuela y golpea entre carril y llanta y golpea en los bajos del tren. El peligro que esto supone, los reducidos costes de mantenimiento y otros factores han hecho que países como Japón (desde 1980) o Alemania (desde 1994) decidieran que todas sus nuevas vías de Alta Velocidad fueran en placa. Pero los grandes descensos de los terraplenes impiden poner vía en placa sobre ellos. Estos dos países limitan también los asientos post-constructivos de los terraplenes a 30 mm.
_________________________________________________________
2006 – Terraplenes y balasto en Alta Velocidad Ferroviaria [2ª parte]: Los trazados de Alta Velocidad en otros países – Melis Maynar, Manuel [pdf]
El autor resume la evolución de los trazados de Alta Velocidad en Japón, Alemania, Francia y otros países, mostrando cómo los dos primeros decidieron ya hace décadas que para la Alta Velocidad no es válida la vía en balasto, y cómo la vía en placa ha llevado a su vez a la práctica eliminación de los terraplenes altos reduciendo su altura a 9 m y su asiento a 30 mm, bajando rasantes y alargando túneles. En Francia, que sigue con vía en balasto, hubo que cambiar todo el balasto a los 14 años de puesta en servicio del París-Lyon con un enorme coste, al igual que en el primer Shinkansen japonés Tokio-Osaka. Estos hechos, el enorme coste del mantenimiento del balasto, el peligro de su vuelo y el golpeo a los trenes y la imposibilidad de la utilización de la vía por los trenes de mercancías nocturnos debido al constante mantenimiento, hacen que el autor crea obligada la vía en placa para Alta Velocidad en España. La amortización de su mayor coste le parece ser mucho más cercana a los 8.8 años que dice Japón que a los 60 años que dicen algunos responsables españoles.
_________________________________________________________
2006 – Terraplenes y balasto en Alta Velocidad Ferroviaria [3ª parte]: Los túneles de Alta Velocidad. Profundidad, proyecto, RMR y NATM – Melis Maynar, Manuel [pdf]
Tras lo publicado en el BOE del 24 de Julio, pag.27705, hoy parece estar confirmado que para que los trenes de Alta Velocidad circulen a su velocidad actual de diseño de 350 o 400 km/h hay que sustituir la vía en balasto por vía hormigonada, la llamada vía en placa, porque los problemas del vuelo del balasto y el golpeo de las piedras a los frenos, ejes y bajos del tren no dejan otra alternativa ya que naturalmente no puede meterse a los pasajeros en un tren en semejantes condiciones. Pero la vía en placa no puede montarse en nuestros trazados porque rompería por los grandes descensos que sufren los altísimos terraplenes y pedraplenes que estamos construyendo. Se llega así a un tipo de trazado que países con orografía similar a la nuestra utilizan desde 1982. Bajada de la rasante de los túneles, gran aumento de su longitud, largos viaductos baratos y robustos que permitan utilizar agrícolamente el terreno que cruzan y eliminación de los terraplenes de altura mayor de 5 o 10 m. En este trabajo se analiza la influencia que tiene la bajada de la rasante de un túnel sobre su proyecto y construcción.
_________________________________________________________
2007 – Terraplenes y balasto en la Alta Velocidad Ferroviaria [4ª parte]: Los trazados de Alta Velocidad en España (I). Algunas alternativas – Melis Maynar, Manuel [pdf]
En las tres primeras partes de este trabajo, publicadas en la ROP, el autor ha intentado mostrar la conveniencia de modificar los criterios de los Estudios Informativos actuales en España, de alargar los túneles ferroviarios para la Alta Velocidad y de bajar sus rasantes, agrupando en uno más largo y profundo los numerosos tunelillos cortos que hoy se están diseñando para los AVE en la cima de las montañas y reduciendo a unos 5 o 10 m la altura máxima de los terraplenes. El terraplén y los rellenos son, en opinión del autor, los enemigos de la Alta Velocidad ferroviaria, ya que por sus grandes descensos impiden instalar la vía en placa y obligan a la vía en balasto. Recientemente ha indicado además el Ministerio de Fomento que el schotterflug o «vuelo del balasto» obliga a muy importantes limitaciones en la velocidad de los trenes, pero naturalmente la vía en placa, que es la única alternativa, exige reconsideraciones muy importantes en los trazados de los Estudios Informativos. En esta última parte del trabajo se analizan brevemente los trazados AVE españoles de Sevilla y Zaragoza, se miden las aceleraciones laterales del mismo tren en ambas vías y se observa cómo estos erróneos criterios de los Estudios Informativos han llevado a que la recientemente abierta vía del AVE de Zaragoza-Barcelona sea hoy de mucha peor calidad que la vieja vía de Sevilla de 1992. Con el tipo de trazado que el autor sugiere el tren podrá circular a su velocidad de 350 o 400 km/h, la infraestructura será más rápida y segura de construcción, la afección al Medio Ambiente mucho menor, el coste mucho menor también y sobre todo las infraestructuras estarán listas en su plazo y la calidad de la vía será la adecuada.


¿Se puede hallar la tensión admisible del terreno a partir del ensayo de placa de carga?

Es muy habitual pensar que en obra civil se hace más y mejor geotecnia que en edificación, lo cual no siempre es cierto. Como ocurre en todas partes, se abusa mucho de las prisas de última hora.

Pongámonos en situación, estructura de hormigón, con cargas muy concentradas, y algo denominado «estudio geotécnico» (sic) que, con un par de catas de apenas 0,90 m de profundidad recomienda 400 kN/m².

A punto de hormigonar, un desconfiado Director de Obra no lo ve claro y propone hacer dos placas de carga sobre la solera y ver si aquello es viable o no.

[Si, ya lo sé, el ensayo es «carga con placa», pero todo el mundo lo llama «placa de carga»]


El ensayo de placa de carga es lento y necesita un camión como contrapeso, (mejor tenerlo en cuenta, que en algunos sitios no cabe) pero es fácil de hacer y proporciona datos reales, sin ensayos posteriores ni correlaciones intermedias, y eso siempre es bueno.

¿Se puede hallar la tensión admisible del terreno a partir del ensayo de placa de carga?

Si, pero no directamente.

El asiento elástico de un cimiento circular rígido depende de los parámetros elásticos del terreno (E y v) y de la tensión aplicada. Con la placa de carga se tiene el problema contrario, se conocen la tensión aplicada y el asiento producido, y las incógnitas son E y v.

Al tratarse de un ensayo tensión-deformación a escala reducida (menor que la cimentación definitiva) sobre el mismo suelo, proporcionará los parámetros de comportamiento del terreno real, pero con las limitaciones del modelo reducido.

A partir de esos parámetros se podrá hallar la tensión admisible, siempre y cuando se tengan en cuenta ciertos condicionantes.

1º) ¿Qué valor de v es correcto tomar?

Depende del terreno, aunque 0,25 es un buen punto de partida.

2º) ¿Qué módulo de deformación E obtenemos?, ¿edométrico, sin drenaje, uniaxial, real?

En principio, el real, aunque dependiendo del suelo, podría ser sin drenaje.

3º) ¿Qué espesor de terreno se ensaya?

Unas tres veces el diámetro, no más.

4º) El asiento elástico ¿qué porcentaje representa respecto del total?

Depende del terreno, hay que estudiarlo para cada caso, pero por suerte existe bibliografía sobre el tema.

5º) ¿Qué norma tomar, la antigua UNE 7391-75, la NLT 357-98 o la moderna UNE 103808-06?

Pues como se suele decir, «para gustos, colores», pero con una estructura que transmite cargas estáticas, prefiero la UNE 7391-75, con una carga más pausada.

6º) ¿Cómo podemos saber si el ensayo es fiable?

Estudiando cómo varía el módulo de elasticidad E durante el proceso de carga. Si el terreno se comporta de modo elástico, el valor de E debe mantenerse más o menos constante durante la carga, verificando también que el terreno mantiene sus propiedades en profundidad (la escasa profundidad que cubre este ensayo, claro).

7º) ¿Qué pasa con el terreno por debajo, el que no se ha ensayado?

Dependerá del tamaño real de la cimentación, la distribución de tensiones en profundidad se puede calcular sin problemas, así que sólo hace falta estudiar, para las dimensiones reales, qué porcentaje de la tensión se concentra en el espesor que hemos ensayado y comprobar hasta qué punto son válidos los resultados.

8º) ¿Qué se hace con el módulo de balasto?

En este caso, nada, era una cimentación rígida, el módulo de balasto no intervenía en los cálculos estructurales, ya trataré el tema más adelante.

geotecnia, ensayo de placa de carga

Como se puede ver, en el primer escalón de carga, el inicial, el terreno se reajustó y cedió un poco pero luego se estabilizó, obteniéndose en ambas placas módulos muy constantes, pero también muy distintos, del orden de cuatro veces.

Calculados de nuevo los asientos diferenciales con estos dos valores de E, no se pudo mantener la recomendación de 400 kN/m², tuvo que bajarse a 230 kN/m², como ya he dicho, eran cargas muy concentradas.

9º) ¿Cuánto ha costado recalcularlo todo de nuevo y el consiguiente retraso?

Mucho más de lo que hubiera costado hacer un buen informe geotécnico desde el principio… eso si, como lo han vendido bien y le han echado la culpa al terreno, todavía lo cobrarán por algún otro lado, que la contrata siempre gana, incluso cuando pierde.

10º) ¿Por qué el ensayo no llega a 400 kN/m², que era la tensión recomendada?

Ni idea, yo también me lo pregunto.

y 11º) ¿Se ha exigido alguna explicación a los redactores del estudio inicial?

Para variar, no.