Guía para Evaluar Estudios de Impacto Ambiental de Proyectos Mineros

La minería no tiene buena prensa, y los Estudios de Impacto Ambiental tampoco ayudan, para qué engañarnos, quizá por eso la Alianza Mundial de Derecho Ambiental (ELAW) preparó en 2010 esta “Guía para Evaluar Estudios de Impacto Ambiental de Proyectos Mineros” (en español, inglés, francés y ruso) con la intención de ayudar a entender un poco mejor unos estudios que casi siempre sobrepasan y desbordan al lector al que van destinados.

Como dice en su introducción:

La mayoría de países requieren una Evaluación de Impacto Ambiental (EIA) antes de dar luz verde a un proyecto minero. Los procesos de EIA ofrecen una valiosa oportunidad para que los ciudadanos participen en las decisiones sobre las minas. El problema es que quienes proponen los proyectos por lo general presentan documentos de EIA complejos y extensos que resultan incomprensibles para la persona común

Esperamos que esta Guía para Evaluar Estudios de Impacto Ambiental de Proyectos Mineros ayude a los abogados y a las comunidades a entender los EIA mineros, identificar las debilidades en los planes de los proyectos mineros, convencer a los tomadores de decisión a rechazar los proyectos mineros mal concebidos, y explorar las maneras como los proyectos mineros propuestos pueden ser social y ambientalmente aceptables.

 

Guía para Evaluar Estudios de Impacto Ambiental de Proyectos Mineros

 Guía para Evaluar Estudios de Impacto Ambiental de Proyectos Mineros (pdf – 3.25 MB) 

 

Guidebook for Evaluating Mining Project Environmental Impact Assessment

 Guidebook for Evaluating Mining Project Environmental Impact Assessment (pdf – 3,01 MB) 

 

Guide pour l’Évaluation des Etudes d’Impacts Environnementaux de Projets Minier

 Guide pour l’Évaluation des Etudes d’Impacts Environnementaux de Projets Minier (pdf – 3,16 MB)  

 

Por cierto, la imagen de portada de la guía está tomada en la mina de Bingham Canyon, justamente…


El impresionante deslizamiento de tierras de la mina de cobre de Bingham Canyon

No hay mucha información técnica todavía pero la imagen no deja de ser impresionante. Se trata de una rotura y el posterior deslizamiento de tierras en la enorme mina de cobre a cielo abierto de Bingham Canyon, la segunda más profunda del mundo (1200 m de excavación), operada por Rio Tinto-Kennecott Utah Cooper, 20 km al suroeste de Salt Lake City, EEUU, en las montañas Oquirrh.

deslizamiento de tierras en la mina de cobre de Bingham Canyon

Fotografía de Ravell Call / The Deseret News via AP. Publicada en PHOTOBLOG

El deslizamiento se produjo ayer jueves, a las 09:30 PM (hora local) aunque se trata de una rotura detectada, auscultada, monitorizada y esperada desde hace días. Los primeros indicios de movimientos se detectaron a principios de febrero, cerca de la zona de visitas, pasando de 2 mm a casi 5 cm a principios de esta semana. 

Vista la evolución de movimientos ya se habían tomado todas las medidas preventivas, evacuando al personal, prohibiendo el acceso a la zona (muy próxima al centro de visitantes) y desviando los caminos. El empujón definitivo lo dieron las lluvias del miércoles por la noche aunque, vistas las fotografías, cabe pensar si no se quedaron cortos en sus previsiones.

The Landslide Blog indica que el deslizamiento ha sido detectado en las estaciones de registro sísmico de la Universidad de Utah y de la Universidad de Columbia, comentando que podría tratarse de dos movimientos, según dichos registros.

Hay una galería con más fotografías en KSL.com News y una fotografía antes-después en The Salt Lake Tribune.

 

Para los curiosos, en el post dedicado a la (también esperada) rotura del Desmonte de Rabat de 1987, en Valencia, hay un artículo de Manuel Romana Ruiz en el que hay un pequeño estudio sobre la evolución cinemática de este tipo de movimientos y su posible previsión, de hecho, uno de los deslizamientos mencionados en el artículo es de esta mina, precisamente, de una rotura de mayo de 1966 (la mina está en producción desde 1906).


«Los 5 errores de concepto más frecuentes en la Ingeniería Geomecánica», según Bieniawski

Un listado de errores de concepto que te interesa conocer si te dedicas a la geotecnia o ingeniería geomecánica en temas de mecánica de rocas, clasificaciones geomecánicas, taludes, túneles, cimentaciones, etc.

***

1) Los túneles pueden diseñarse usando bien las clasificaciones geomecánicas, bien los modelos numéricos, o bien a partir de los datos de la instrumentación

No es cierto. Hacerlo así es un grave error. Es primordial evitar elegir un único método de diseño justificándolo con “no teníamos el tiempo y el dinero” para afrontar la aproximación correcta. Los tres métodos señalados son: el empírico (por ejemplo la clasificación RMR o la Q), el analítico (por ejemplo, las soluciones concretas que se obtienen en los modelos numéricos de ordenador), y el observacional (por ejemplo, las mediciones que se realizan durante la construcción o el Nuevo Método Austriaco NMA).

 

2) Para macizos rocosos de muy mala calidad, no es aplicable la categoría inferior de la clasificación RMR

No es cierto, son ideas equivocadas sobre los hechos. Los hechos son que el RMR continua usándose con éxito incluso para “rocas de muy mala calidad”, Clase 5 con RMR<20, cuando los datos se determinan de manera adecuada.

Este mito se deriva de hábitos erróneos que utilizan las clasificaciones geomecánicas como un “libro de cocina” del que se espera obtener “recetas” válidas para todas las situaciones de proyecto.

 

3) El criterio de Hoek-Brown y el criterio de Mohr-Coulomb son los únicos para estimar la resistencia de los macizos rocosos y el factor de seguridad

No es cierto, el criterio de Mohr-Coulomb, que se remonta a 1773 (!!), sirve para bastantes cosas, en particular para el análisis de la estabilidad de taludes, pero existen otros criterios de resistencia de pico -igualmente efectivos- por ejemplo, el criterio de Yudhbir-Bieniawski (1983) que se utiliza para cotejar los resultados del criterio de Hoek-Brown.

 

4) La mejor forma de estimar el módulo de deformación es a partir de cualquiera de las correlaciones que se encuentran en la literatura de la mecánica de rocas

No es cierto, unas correlaciones están mejor sustentadas que otras, y algunas correlaciones deben evitarse si no se confirman con ensayos in situ. Pero hay una gran diferencia entre “determinar” y “estimar” la deformabilidad del macizo rocoso: determinar es muy deseable; estimar se hace en ausencia de datos in situ fiables y para diseños preliminares.

 

5) Es suficiente con basarse en ejemplos estudiados y desarrollados en el campo de la ingeniería civil de túneles

¡ Una gran equivocación ! Hay gran cantidad de valiosa información que obtener de “nuestros primos” los ingenieros de minas, para aplicarla a la ingeniería civil.

Tanto los ingenieros civiles como los de minas tienen gran tradición y suficientes logros en su haber en el diseño y construcción de túneles de obras civiles y galerías mineras, cavernas y chimeneas. Sin embargo, llama la atención la escasa interacción entre las dos disciplinas, y esto es particularmente evidente en lo que se refiere a las clasificaciones del macizo rocoso.

 ***

Todo esto y mucho más en el post dedicado al artículo «Errores en la aplicación de las Clasificaciones Geomecánicas y su corrección», de R. Z. Bieniawski (que además está en castellano, para que no te quejes).


«El colapso de la estación de Pinheiros de enero de 2007», por Nick Barton

Otra conferencia o Keynote Lecture del Eurock 2009, esta vez a cargo de Nick Barton, muy conocido por la Clasificación Geomecánica Q de Barton, Lien y Lunde, y que en esta ocasión estudia el colapso producido en la estación de Pinheiros, en la línea 4 del metro de Sao Paulo, en enero de 2007.

Se trata de un problema recurrente, los túneles de metro profundos no gustan, la gente ya no quiere bajar tramos y más tramos de escaleras hasta el centro de la tierra, están pasados de moda, ahora se buscan estaciones poco profundas, amplias, luminosas y diáfanas, lo cual resulta problemático porque eso implica hacerlas muy superficiales, y ya se sabe que los niveles más superficiales del terreno suelen ser también los más alterados, por no mencionar que son también los niveles ocupados por las cimentaciones más próximas. 

En este caso, el colapso afectó a una longitud de 40 metros con una luz de 19 metros, se llevo por delante a siete personas y se parece mucho a otros colapsos de frente… quizá demasiado.

La conferencia lleva por título «Metro construction at the most unfavourable depth caused a major metro station collapse in Brazil due to a unique sub-surface structure” y está disponible también como artículo [pdf comprimido en zip, 2,17 MB]. Tiene una duración de 42 minutos y habría ganado mucho si hubieran apagado la luz, francamente.

Si alguien quiere más información, tiene más datos en esta presentación [pdf – 10 MB] y algunas fotografías interesantes en esta cuenta de Flickr.


Rotura de la balsa de lodos de Ajka, Hungría

Se calcula que unos 700.000 metros cúbicos de «lodo rojo», el residuo corrosivo (pH>12) que se obtiene al refinar la bauxita para extraer alúmina, han podido escapar de la balsa de lodos de la imagen, en Ajka, al SO de Budapest, a unos 120 km en línea recta (la balsa en Google Maps).

La escena recuerda mucho a la rotura del dique de Aznalcóllar, en 1998, y puede convertirse en un problema todavía mayor si alcanza el Danubio, aunque desde el punto de vista geotécnico, lo más interesante es la rotura del dique.

Con el tiempo se publicará algo más o menos técnico, por ahora, nos tenemos que conformar con ver las fotografías. Adjunto las más interesantes que he localizado, casi todas de György Varga para MTI, publicadas en Index (pulsa encima para verlas mejor y presta atención al tamaño de las máquinas en la última imagen).

 

La balsa en Google Maps, antes de la rotura.

Sandor H. Szabo para AP, vía msbnc