Santamarta & Hernández: «Ingeniería Geológica en Terrenos Volcánicos»

Métodos, Técnicas y Experiencias en las Islas Canarias

He de hacer uso del buscador para recordar cuando nombré por última vez los terrenos volcánicos. Hay dos apariciones. La primera es de hace mucho tiempo, en una entrada eliminada (el lunes que viene lo explico) en la que señalaba la escasa atención que les prestaba la normativa geotécnica estatal. La última aparición es de septiembre de 2013, en un libro de Juan Carlos Santamarta.

Bien, pues hay novedades al respecto, y casi de los mismos autores, además, porque son Juan Carlos Santamarta y Luis Enrique Hernández los que, como coordinadores, encabezan este archivo de 434 páginas que se colapsó el día que se anunció en twitter. Y no exagero, el primer autor me tuvo que enviar un enlace por correo porque me quedé sin copia.

Santamarta & Hernández: "Ingeniería Geológica en Terrenos Volcánicos"

Mucha gente ha participado en su redacción (24 autores, para ser exactos), lo que hace que sus 15 capítulos abarquen un montón de temas distintos.

Por aquello de la deformación profesional, como ingeniero prefiero los capítulos más geotécnicos, como los de clasificaciones geomecánicas (3), problemas geotécnicos en obras de captación de aguas (7), la restauración de la bóveda del auditorio de Los Jameos del agua (10), el de metodología de diseño de muros de gravedad con anclajes pasivos (12) o los dedicados a estabilización y saneamiento (14 y 15), aunque debo reconocer que el que más me ha gustado ha sido el dedicado a las infraestructuras marítimas (8).

Puedes descargar el libro pulsando en el icono inferior, esta vez sin problemas gracias a la nueva sección de Descargas de la Sociedad Española de Mecánica de Rocas.

Santamarta & Hernández: Ingeniería Geológica en Terrenos VolcánicosSantamarta & Hernández: «Ingeniería Geológica en Terrenos Volcánicos» (70 MB)

«Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes»

Libros de mecánica de suelos hay muchos, tanto de teoría como de problemas. Libros de mecánica de rocas ya no hay tantos, y si hablamos de problemas, el número todavía se reduce más, mucho más, de hecho, ahora mismo sólo me viene a la cabeza el completo segundo tomo («Illustrative Worked Examples«) del «Engineering Rock Mechanics«, de Harrison & Hudson.

Bien, pues tenemos un nuevo libro de problemas de mecánica de rocas que añadir a esa lista, en castellano y de libre acceso, por cortesía de la Sociedad Española de Mecánica de Rocas, que ha alojado el archivo en su nueva sección de descargas.

Vamos, que todo son ventajas.

problemas-mecanica-rocas-portada

«Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes» está escrito por Javier Arzúa, Leandro Alejano e Ignacio Pérez-Rey, de la E. T. S. de Ingeniería de Minas de Vigo. El libro recopila los problemas de la asignatura de los últimos años, tiene 44,8 MB, 312 páginas y está bastante bien, así que ya tardáis en descargarlo si os interesan estos temas.

Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes (44,8 MB)

Problemas de Mecánica de Rocas: Fundamentos e Ingeniería de Taludes (44,8 MB)

El único punto negativo es que algunos esquemas no se ven del todo bien, un problema muy habitual al insertar figuras en los archivos pdf. No termino de estar muy de acuerdo con la introducción, cuando dice que la Mecánica de Rocas debería denominarse, más rigurosamente, Ingeniería de los Macizos Rocosos. En mi opinión, Mecánica de Rocas es un término lo suficientemente descriptivo y conciso, pero para gustos, colores, claro.

Por cierto, este libro complementa un primer tomo, de teoría, de (casi) los mismos autores. Tengo pendiente reseñarlo por aquí desde hace un montón de tiempo. Un día de estos lo hago, prometolo 🙂

Nueva edición del «Piling Handbook», el manual de cálculo de tablestacas de ArcelorMittal

Allá por 1990, el Ministerio de Fomento (entonces de Obras Públicas y Transportes) decidió traducir el manual de cálculo de la empresa Hoesch y publicarlo con el título de «Manual de Cálculo de Tablestacas«. Ya sea por casualidad, ya sea porque Hoesch fue absorbida por Krupp en 1991 (y ésta fusionada con Thyssen en 1999), la cuestión es que aquel didáctico manual lleva años agotado (y lo que te rondaré, morena, visto lo visto).

En ausencia de un texto, digamos, «ministerial», hay que tener alternativas, y gracias a este tweet de Andrea Barcelo (@AndreaB_SSP) descubro que ArcelorMittal acaba de publicar su «Piling Handbook 9th Edition«, que pese al título, está mucho más enfocado a las tablestacas (o sheet piles) que a los pilotes.

Según parece, esta novena edición se ha revisado a fondo para adecuarla a la normativa europea, incluyendo también un ejemplo completo (el capítulo 12, concretamente). Echo a faltar algunas gráficas, aunque con 80 páginas (y 20 MB) más, habrá que mirarlo con calma antes de opinar.

"Piling Handbook 9th Edition" manual de cálculo de tablestacas ArcelorMittal

«Piling Handbook 9th Edition» ArcelorMittal (pdf – 37 MB)

 

Por cierto, dicen los rumores que ArcelorMittal planea fusionarse con ThyssenKrupp y Tata, así que… quién sabe, quizá volvamos a ver un manual Hoesch-Krupp-Thyssen-Arcelor-Mittal-Tata, años después.

La paradoja de Hambly: Cuando añadir más apoyos añade también más esfuerzo

Hambly (1985) propuso un problema pedagógico para ilustrar las dificultades en el proyecto de una estructura hiperestática:

Una lechera que pesa 600 N está apoyada sobre un taburete de tres patas. ¿Para qué esfuerzo básico debe calcularse cada pata del taburete?

Se considera que el taburete es simétrico, que la lechera está apoyada en su centro, y así sucesivamente.

La respuesta a la pregunta es, por supuesto, 200 N.

La misma lechera se apoya ahora en un taburete cuadrado con cuatro patas, una en cada esquina y, de nuevo, el taburete y la carga son simétricas. ¿Para que esfuerzos debe proyectarse cada una de las patas del taburete?

La respuesta de 150 N no es necesariamente correcta. Un robusto taburete de ordeñar casi rígido, situado sobre un suelo firme y también casi rígido en la nave de ordeñado, cojeará; tres de las patas estarán en contacto, soportando el peso de la lechera, pero la cuarta estará separada del suelo.

Si esta cuarta pata está separada por sólo una fracción de milímetro, no hay duda de que la fuerza que está soportando es cero. Por una simple consideración de estática, la fuerza en la pata situada en la diagonal opuesta también será cero, aunque parezca estar en contacto con el suelo.

El peso de la lechera, de hecho, estará soportado simétricamente por las otras dos patas del taburete, y cada una debe por tanto calcularse para soportar una fuerza de 300 N.

Ahora podemos imaginar que el taburete está situado arbitrariamente sobre un suelo irregular, y no hay manera de decidir a priori qué patas están en contacto —todas las patas deben, por consiguiente, ser proyectadas para soportar una fuerza de 300 N—.

Esta es la paradoja: la adición de una cuarta pata implica un incremento, en vez de un decremento, en el esfuerzo para el que deben proyectarse las patas.

[…]

Si se realizan los ensayos con flexímetros colocados en las patas, se verá que el esfuerzo en una pata puede tener cualquier valor entre 0 y 300 N, y un buen número de experimentos registrarán la carga como exactamente 0 ó 300 N.

Precisamente observaciones de este tipo fueron hechas por el Comité de Investigación de Estructuras de Acero en los años 1930, y su conclusión fue que la gran cantidad de imperfecciones geométricas en las estructuras hacían que el análisis elástico fuera la herramienta equivocada para el cálculo.

Estas observaciones, junto con los trabajos experimentales de Kazinczy. Maier-Leibnitz y otros, fueron las que condujeron a los métodos plásticos para el cálculo de estructuras de acero (o de cualquier estructura construida con cualquier material dúctil).

— «Análisis de estructuras: un estudio histórico»
Jacques Heyman. 1998

Aunque la versión española del libro traduce «stool» como silla, he preferido usar el término «taburete», más coherente con el bovino ejemplo.

Nomenclatura de taludes: Grado, pendiente y porcentaje

Un esquema de los taludes más habituales en grados sexagesimales, pendiente (V:H) y porcentaje.

No recuerdo dónde vi este esquema por primera vez, lo que si recuerdo es que no hubo manera de hacerlo con Framework II o Lotus 1-2-3, que eran las hojas de cálculo que usaba por aquel entonces (finales de los 80), así que terminé dibujándolo en papel milimetrado (lo que me permitió comprobar que el esquema original tenía un error, por cierto).

Esquema Talud: Grados - Pendiente - Porcentaje

La siguiente versión, ya trabajando, fue en acetato transparente (si, eso que se usaba cuando no había PowerPoint) y resultaba muy útil para «intuir» -porque esa era la palabra- las pendientes en aquellos planos fotocopiados una y otra vez, cuando no enviados por fax, ¡¡ el horror !!.

Al empezar a trabajar en Bosnia decidí que ya era hora de actualizarlo, así que añadí todos los taludes que me he ido encontrando durante estos años y, ya de paso, cambié al formato V:H usado allí, más cercano al concepto de pendiente.

El archivo pdf está pensado para imprimir en A4. Espero que a alguien le sirva (y no haber cometido ningún error, claro).

icono pdfEsquema Talud: Grados – Pendiente – Porcentaje

 

PD: Otro día os cuento lo que uso para medir directamente en pantalla cuando me envían un archivo pdf o jpg.