Nuevo libro: «Manual de estaciones geomecánicas. Descripción de macizos rocosos en afloramientos»

Lo avisé en la última entrada, el próximo libro estaría dedicado a las estaciones geomecánicas. Bien, helo aquí, se titula «Manual de estaciones geomecánicas» y está escrito por Luis Jordá, Roberto Tomás, Manuel Arlandi y Antonio Abellán.

Como sabéis, cuando reseño o anuncio libros en el blog trato de ser imparcial. Si algo me gusta, lo digo, y si algo no me gusta, también lo digo (explicando por qué, eso si, que criticar es fácil).

Bien, pues con este libro voy a ser parcial, lo aviso desde el principio, básicamente porque los autores son amigos, me han enviado una copia firmada y dedicada (saben que me gustan esas cosas), salgo en la bibliografía y hasta me nombran en los agradecimientos. Vamos, que podría decir que soy imparcial, pero no me ibais a creer, ¿a que no?

Supe de la existencia de este libro (en aquel momento todavía un índice) en verano de 2013, en Perú, tomando una Cusqueña con el primer autor. Lo cierto es que ya lo había olvidado, y aunque hace unos meses estuve con el segundo autor (esta vez fue una Mahou, en Madrid), ni se me pasó por la cabeza preguntar, y resulta que ya estaba acabado.

Como su nombre indica, se trata de un completo Manual de estaciones geomecánicas para la descripción de macizos rocosos en afloramientos. Busca ser eminentemente práctico y gráfico, y creo que consigue ambas cosas. ¿Es gratuito?, no, cuesta ~30 €, ¿recomiendo su compra?, si, ¿por qué?, sigue leyendo

manual-estaciones-geomecanicas

Los autores tenían el listón muy alto, porque ya había un libro en español de esta temática. En 1978, tratando de normalizar la manera de tomar datos de campo, la International Society for Rocks Mechanics (ISRM) publicó los “Suggested methods for the quantitative description of discontinuities in rock masses“. En 1999, el IGME tradujo parte del texto del ISRM, añadió un montón de fotografías con ejemplos y publicó su “Manual de campo para la descripción y caracterización de macizos rocosos en afloramientos“. Por cierto, siendo Luis González de Vallejo uno de los editores, el libro incluía su clasificación geomecánica, la SRC, tengo pendiente hablar sobre ella, algún día.

La idea de partida de este nuevo libro era hacer “una herramienta de consulta rápida” en la que estuvieran incluidas todas las tablas, gráficas y esquemas necesarios para hacer una estación geomecánica. Esto no quiere decir que te puedas plantar delante de un talud con este libro y hacer una estación geomecánica. Hay que tener una serie de conocimientos previos, pero todo lo demás está aquí (salvo, quizás, un estadillo o planilla para tomar notas).

Cuando llegó a mis manos no tenía ni idea de que el prólogo fuera de D. Manuel Romana, pero bastó empezar a leerlo para reconocer su estilo. Además menciona algo que estuvimos comentando, en petit comité, durante la Jornada 2016 de la Sociedad Española de Mecánica de Rocas, si en el futuro se seguirán haciendo estaciones geomecánicas como hasta ahora. Contesta D. Manuel que si y no, porque “el proceso de captación de datos se automatizará y mecanizará“.

Coincido, los nuevos métodos van a permitir extraer muchísima más información del macizo (el cuarto autor es un experto en el tema), y en mi opinión, en ese momento será más necesario que nunca saber hacer e interpretar los datos de una estación geomecánica, porque el día que se automatice el proceso pasará lo que ya ha ocurrido con otras áreas de la geotecnia… que veremos datos completamente imposibles justificados con “pues es lo que ha salido”, y si en mecánica de suelos es peligroso, en rocas ya ni os cuento.

A fin de ser lo más completo posible, el libro se explaya bastante en la descripción de las discontinuidades, tratando con detalle brújula, esclerómetro, perfilómetro, JRC, ensayos de carga puntual, RQD, efecto escala, etc.

Por cierto, la foto del perfilómetro de la pág. 104 es de un servidor y ya había salido en el blog. El texto no lo indica pero está tomada en Jávea, Alicante, el día de la final del Mundial de Sudáfrica de 2010. A mi el fútbol me da igual, pero a los sondistas no, por eso recuerdo qué día era.

Dada la importancia de las estaciones geomecánicas en los túneles, el quinto y último capítulo (coordinado por el tercer autor, supongo) está dedicado al levantamiento de frentes de excavación. El libro concluye con cuatro apéndices dedicados a las clasificaciones geomecánicas más utilizadas: RMR de Bieniawski, SMR de Romana, Q de Barton y RMi de Pälstrom, aunque lo cierto es que las clasificaciones geomecánicas se mencionan en varios puntos del texto (muy interesante la comparativa pros-contras de cada una de ellas del apartado 5.5.1).

Para finalizar, que esto ya está quedando demasiado largo, creo haber encontrado una diminuta errata (bueno, yo lo llamo errata, mi chica lo ha definido como “frikada nivel 15”). En la página 72 se dice que el sistema Clar o brújula de cuadrantes “resulta más complejo y menos adecuado para los fines con los que se hace uso de la brújula en mecánica de rocas”. Sin embargo, en la página 159 los autores se decantan por la brújula Freiberger.

Coincido al 100%, yo también tengo una Freiberger, aunque hay algo que no cuadra. La empresa VEB Freiberger Präzisionsmechanik (ahora FPM Holding GmbH) lleva años fabricando instrumental técnico en colaboración con la Escuela de Minas de Freiberg, la más antigua del mundo. Entre otros aparatos, fabrica las llamadas “brújulas tectónicas”, con las que es posible medir dirección de buzamiento y buzamiento al mismo tiempo… de acuerdo al artículo de 1954 del profesor Eberhard Clar, de la universidad de Viena. Si, la brújula Freiberger es una Clar (de hecho, lo indica en las instrucciones).

Dicho todo esto, espero que esta reseña os sea útil. Si alguien quiere comprarlo, puede hacerlo en Amazon (estará disponible en unos días, hay que apuntarse a la lista de espera).

Eso es todo. Hasta la próxima.

Santamarta & Hernández: “Ingeniería Geológica en Terrenos Volcánicos”

Métodos, Técnicas y Experiencias en las Islas Canarias

He de hacer uso del buscador para recordar cuando nombré por última vez los terrenos volcánicos. Hay dos apariciones. La primera es de hace mucho tiempo, en una entrada eliminada (el lunes que viene lo explico) en la que señalaba la escasa atención que les prestaba la normativa geotécnica estatal. La última aparición es de septiembre de 2013, en un libro de Juan Carlos Santamarta.

Bien, pues hay novedades al respecto, y casi de los mismos autores, además, porque son Juan Carlos Santamarta y Luis Enrique Hernández los que, como coordinadores, encabezan este archivo de 434 páginas que se colapsó el día que se anunció en twitter. Y no exagero, el primer autor me tuvo que enviar un enlace por correo porque me quedé sin copia.

Santamarta & Hernández: "Ingeniería Geológica en Terrenos Volcánicos"

Mucha gente ha participado en su redacción (24 autores, para ser exactos), lo que hace que sus 15 capítulos abarquen un montón de temas distintos.

Por aquello de la deformación profesional, como ingeniero prefiero los capítulos más geotécnicos, como los de clasificaciones geomecánicas (3), problemas geotécnicos en obras de captación de aguas (7), la restauración de la bóveda del auditorio de Los Jameos del agua (10), el de metodología de diseño de muros de gravedad con anclajes pasivos (12) o los dedicados a estabilización y saneamiento (14 y 15), aunque debo reconocer que el que más me ha gustado ha sido el dedicado a las infraestructuras marítimas (8).

Puedes descargar el libro pulsando en el icono inferior, esta vez sin problemas gracias a la nueva sección de Descargas de la Sociedad Española de Mecánica de Rocas.

Santamarta & Hernández: Ingeniería Geológica en Terrenos VolcánicosSantamarta & Hernández: “Ingeniería Geológica en Terrenos Volcánicos” (70 MB)

¿Puede un simple acopio de tierras desestabilizar la pila de un viaducto?

Por supuesto que si, y eso es lo que ocurrió en junio de 2014 en este tramo (google maps) en viaducto de la autopista interestatal I-495 (Delaware, EEUU).

I-495-vista-general-acopio

He aquí el culpable del problema

El viaducto, que no es precisamente pequeño (3 carriles por sentido y 90.000 vehículos diarios) fue cerrado al tráfico tras verificar una llamada al 911 que advertía que “el puente parecía estar separándose” (puedes oír la llamada aquí).

La inspección comprobó que, efectivamente, las pilas de las secciones 11 a 14 estaban inclinadas (hasta un 4%), con un asentamiento vertical máximo relativo de 46 cm entre calzadas, por lo que el tramo quedó cerrado al tráfico el 2 de junio.

El viaducto, construido en 1974, tiene una longitud total de 1.463 metros, formado por 38 vanos de 35 metros apoyados en pilas columna de 18 metros de altura. La cimentación de las pilas está resuelta por zapatas arriostradas de 1,70 m de canto sobre pilotes metálicos (perfil en H) hasta el nivel de roca, a algo más de 30 metros de profundidad.

I-495-inclinacion-pilas

Como se puede comprobar, la alerta estaba justificada.

Lo primero que llamó la atención de los inspectores fue un enorme acopio de rellenos (aprox. 45.000 toneladas) próximo a la cimentación de la zona afectada, alrededor del cual se podían apreciar asientos y grietas, un acopio que no estaba ahí en la última revisión bianual de la FHWA, de octubre de 2012, pero que si aparecía en fotografías aéreas de 2013.

I-495-fotos-aereas

Por experiencias previas, primero se sospechó de una corrosión de los pilotes metálicos pero una vez realizadas las catas se pudo comprobar que los pilotes, pese a haber pandeado, se conservaban en buen estado, no así las zapatas, con fisuras horizontales y diagonales.

El hecho de que las dos zapatas de cada sección estuvieran dañadas del mismo modo parecía confirmar la causa, un desplazamiento del terreno debido a la extrusión lateral del suelo blando bajo la carga creada por el acopio de tierras.

I-495-esquema1

Según el informe oficial, hubo una “perfect storm of factors“, una perfecta mala combinación de factores “si y sólo si” que hicieron posible el fallo:

  • El terreno: Suelos orgánicos muy blandos y muy compresibles en un espesor medio de 30 metros, algo más bajo la pila más afectada.
  • La cimentación: Pilotes metálicos (perfil en H, no se indican dimensiones) de más de 40 metros de longitud, hasta el nivel de roca, que no pudieron soportar la carga lateral y pandearon.
  • La carga: Un acopio de tierras de aproximadamente 45,000 toneladas que produjo la extrusión lateral del terreno.

La autopista se cortó al tráfico el 2 de junio. Los rellenos se retiraron entre esa misma noche y el 10 de junio. Puesto que el tiempo era el factor crítico (repetimos, 90.000 vehículos diarios) y el arreglo no podía esperar, el 4 de junio se decidió acudir de urgencia a obras cercanas y “tomar prestado” el equipo necesario, lo que permitió ahorrar entre 10 y 12 semanas.

I-495-esquema2

Como se puede ver en los esquemas (tomados de www.delawareonline.com), el arreglo consistió en una nueva cimentación en las secciones 12 y 13 y un recalce en las 11 y 14 (pulsa en los esquemas para verlos mejor).

I-495-esquema3

I-495-esquema4

Para ello se perforaron 4 pilotes de 1,20 m de diámetro hasta 50 metros de profundidad a ambos lados de la cimentación existente, uniendo las cabezas con una viga de coronación. En las secciones 12 y 13 se colocó un apeo metálico temporal y se sustituyeron las pilas originales por otras tres, mientras que en las secciones 11 y 14 se “solidarizó” la cimentación existente con las nuevas vigas.

I-495-viga

Detalle de las nuevas vigas

Tras las preceptivas pruebas de carga, la calzada sur fue abierta al tráfico el 31 de julio y la calzada norte el 23 de agosto. Los trabajos terminaron totalmente en abril de 2015. El coste de la operación ascendió a 40 millones de dólares y por lo que se ve, un montón de gente visitó la obra, incluso el presidente Obama.

I-495-Obama

La incidencia quedó añadida al protocolo de inspecciones de la FHWA y poco después se localizó un caso similar, así que al menos ha servido para algo… algo más que ser un ejemplo real de extrusión lateral, quiero decir.

Más información:

How Could a Pile of Dirt Cause a Major Interstate Bridge To Tilt?

Toda la información, fotos y vídeos en delawareonline.com

Nivel freático alto vs Piscina vacía (vídeo)

Una patología mucho más frecuente de lo que se piensa, especialmente en zonas inundables. En la web de origen lo han llamado “reverse sinkhole”, aunque se trata de algo muy distinto, básicamente una subida del nivel freático debido a las lluvias y un recinto hueco (una piscina vacía) que no puede compensar el empuje ascendente y no tiene otro remedio que… flotar.

Bueno, al menos la piscina está bien hecha y ha subido sin partirse, aunque es una lástima que no la dejaran llena.

Visto en geoprac.net

“el puente constituye para la colectividad un daño duradero”

“El puente comportará para el futuro un constante y desproporcionado desembolso económico por parte de la administración, ya que la obra se ve afectada por una patología crónica, caracterizada por la necesidad de un seguimiento constante y continuas intervenciones que no pueden atribuirse a operaciones ordinarias de mantenimiento. Se podría considerar que el puente constituye para la colectividad un daño duradero“.

— Carmine Scarano
Procurador del Tribunal de Cuentas del Véneto.
El País, 22 de agosto de 2013

Dejando a un lado que estamos hablando de un diseño de Santiago Calatrava que (una vez más) se ha salido de madre (de 3,8 a 11,2 millones de euros), consuela saber que las autoridades italianas son conscientes de la existencia de algo llamado “operaciones ordinarias de mantenimiento”. Ahora sólo falta que se apliquen el cuento las autoridades españolas, porque tenemos las carreteras que dan pena. Por supuesto, el día que pase algo todo serán excusas y lamentos, pero no será porque no se haya avisado.

En cuanto al ínclito, el proceso se reanudará el próximo 13 de noviembre.