El impresionante deslizamiento de tierras de la mina de cobre de Bingham Canyon

No hay mucha información técnica todavía pero la imagen no deja de ser impresionante. Se trata de una rotura y el posterior deslizamiento de tierras en la enorme mina de cobre a cielo abierto de Bingham Canyon, la segunda más profunda del mundo (1200 m de excavación), operada por Rio Tinto-Kennecott Utah Cooper, 20 km al suroeste de Salt Lake City, EEUU, en las montañas Oquirrh.

deslizamiento de tierras en la mina de cobre de Bingham Canyon

Fotografía de Ravell Call / The Deseret News via AP. Publicada en PHOTOBLOG

El deslizamiento se produjo ayer jueves, a las 09:30 PM (hora local) aunque se trata de una rotura detectada, auscultada, monitorizada y esperada desde hace días. Los primeros indicios de movimientos se detectaron a principios de febrero, cerca de la zona de visitas, pasando de 2 mm a casi 5 cm a principios de esta semana. 

Vista la evolución de movimientos ya se habían tomado todas las medidas preventivas, evacuando al personal, prohibiendo el acceso a la zona (muy próxima al centro de visitantes) y desviando los caminos. El empujón definitivo lo dieron las lluvias del miércoles por la noche aunque, vistas las fotografías, cabe pensar si no se quedaron cortos en sus previsiones.

The Landslide Blog indica que el deslizamiento ha sido detectado en las estaciones de registro sísmico de la Universidad de Utah y de la Universidad de Columbia, comentando que podría tratarse de dos movimientos, según dichos registros.

Hay una galería con más fotografías en KSL.com News y una fotografía antes-después en The Salt Lake Tribune.

 

Para los curiosos, en el post dedicado a la (también esperada) rotura del Desmonte de Rabat de 1987, en Valencia, hay un artículo de Manuel Romana Ruiz en el que hay un pequeño estudio sobre la evolución cinemática de este tipo de movimientos y su posible previsión, de hecho, uno de los deslizamientos mencionados en el artículo es de esta mina, precisamente, de una rotura de mayo de 1966 (la mina está en producción desde 1906).


Disponible el News Journal 2012 de la International Society for Rock Mechanics

La Sociedad Internacional de Mecánica de Rocas (ISRM -International Society for Rock Mechanics) ha publicado su News Journal de 2012 resumiendo las actividades del año (el EUROCK 2012), lamentando las pérdidas (John A. Franklin, si, el de la fórmula de rotura a carga puntual o point load) y con un artículo sobre el método de elementos finitos aplicado a túneles con un par de fotografías interesantes de una rotura en un modelo a escala y su correspondiente simulación numérica.

Se puede leer on-line desde la web del ISRM o bien descargar en pdf, directamente (4,53 MB).

News Journal 2012 de la International Society for Rock Mechanics


«Los 5 errores de concepto más frecuentes en la Ingeniería Geomecánica», según Bieniawski

Un listado de errores de concepto que te interesa conocer si te dedicas a la geotecnia o ingeniería geomecánica en temas de mecánica de rocas, clasificaciones geomecánicas, taludes, túneles, cimentaciones, etc.

***

1) Los túneles pueden diseñarse usando bien las clasificaciones geomecánicas, bien los modelos numéricos, o bien a partir de los datos de la instrumentación

No es cierto. Hacerlo así es un grave error. Es primordial evitar elegir un único método de diseño justificándolo con “no teníamos el tiempo y el dinero” para afrontar la aproximación correcta. Los tres métodos señalados son: el empírico (por ejemplo la clasificación RMR o la Q), el analítico (por ejemplo, las soluciones concretas que se obtienen en los modelos numéricos de ordenador), y el observacional (por ejemplo, las mediciones que se realizan durante la construcción o el Nuevo Método Austriaco NMA).

 

2) Para macizos rocosos de muy mala calidad, no es aplicable la categoría inferior de la clasificación RMR

No es cierto, son ideas equivocadas sobre los hechos. Los hechos son que el RMR continua usándose con éxito incluso para “rocas de muy mala calidad”, Clase 5 con RMR<20, cuando los datos se determinan de manera adecuada.

Este mito se deriva de hábitos erróneos que utilizan las clasificaciones geomecánicas como un “libro de cocina” del que se espera obtener “recetas” válidas para todas las situaciones de proyecto.

 

3) El criterio de Hoek-Brown y el criterio de Mohr-Coulomb son los únicos para estimar la resistencia de los macizos rocosos y el factor de seguridad

No es cierto, el criterio de Mohr-Coulomb, que se remonta a 1773 (!!), sirve para bastantes cosas, en particular para el análisis de la estabilidad de taludes, pero existen otros criterios de resistencia de pico -igualmente efectivos- por ejemplo, el criterio de Yudhbir-Bieniawski (1983) que se utiliza para cotejar los resultados del criterio de Hoek-Brown.

 

4) La mejor forma de estimar el módulo de deformación es a partir de cualquiera de las correlaciones que se encuentran en la literatura de la mecánica de rocas

No es cierto, unas correlaciones están mejor sustentadas que otras, y algunas correlaciones deben evitarse si no se confirman con ensayos in situ. Pero hay una gran diferencia entre “determinar” y “estimar” la deformabilidad del macizo rocoso: determinar es muy deseable; estimar se hace en ausencia de datos in situ fiables y para diseños preliminares.

 

5) Es suficiente con basarse en ejemplos estudiados y desarrollados en el campo de la ingeniería civil de túneles

¡ Una gran equivocación ! Hay gran cantidad de valiosa información que obtener de “nuestros primos” los ingenieros de minas, para aplicarla a la ingeniería civil.

Tanto los ingenieros civiles como los de minas tienen gran tradición y suficientes logros en su haber en el diseño y construcción de túneles de obras civiles y galerías mineras, cavernas y chimeneas. Sin embargo, llama la atención la escasa interacción entre las dos disciplinas, y esto es particularmente evidente en lo que se refiere a las clasificaciones del macizo rocoso.

 ***

Todo esto y mucho más en el post dedicado al artículo «Errores en la aplicación de las Clasificaciones Geomecánicas y su corrección», de R. Z. Bieniawski (que además está en castellano, para que no te quejes).


Manuel Romana: «Cimentación de presas. Aspectos Geomecánicos»

Conferencia Magistral Raúl J. Marsal 2012

Hace un par de meses anuncié la “XXVI Reunión Nacional de Mecánica de Suelos e Ingeniería Geotécnica” que se iba a celebrar en Cancún en noviembre de 2012, destacando que la conferencia magistral “Raúl J. Marsal” correría a cargo de Manuel Romana Ruiz, catedrático emérito de la UPV. Pues bien, en rigurosa primicia y como regalo de navidad (escribo esto el 24 de diciembre) tenéis aquí el texto íntegro de la conferencia «Cimentación de presas. Aspectos Geomecánicos» directamente de su autor, al que agradezco el envío.

Raúl Jaime Marsal, nacido en Argentina, fue uno de los grandes geotécnicos mexicanos del siglo XX, junto con Nabor Carrillo y Leonardo Zeevaert (entre otros) de ahí que las conferencias de la Sociedad Mexicana de Ingeniería Geotécnica lleven sus nombres. Un detalle a tener en cuenta, hasta el momento sólo otro español había tenido el honor de impartir una de estas conferencias, José Antonio Jiménez Salas, que habló sobre mecánica de suelos no saturados en 1990.

La conferencia proporciona una visión muy completa de la cimentación de presas y su evolución histórica conforme han ido apareciendo nuevos materiales, nuevas técnicas, nuevas teorías y, por supuesto, nuevos problemas geomecánicos (presión de poro, distintos módulos de deformación, etc.). No faltan los ejemplos comentados (Proserpina, Hoover, El Atazar, Mantaro, Karun, Jin Ping, etc.) ni las clasificaciones geomecánicas ad hoc, como la clasificación Dam Mass Rating o DMR, desarrollada por el propio Manuel Romana desde 2003.

El texto tiene tres apéndices, los dos primeros están dedicados al DMR mientras que el tercero es una aclaración sobre la diferente terminología técnica utilizada en México y España, con algunas equivalencias que todos conocemos (concreto por hormigón o enrocamiento por escollera), otras no tan habituales, y términos que no utilizamos del mismo modo, como los esfuerzos de tensión.

Manuel Romana. Cimentación de presas. Aspectos Geomecánicos. Conferencia Raúl Marsal

Manuel Romana – Cimentación de presas. Aspectos Geomecánicos [pdf – 3,61 MB]

Calcula el toppling o vuelco de estratos con RocTopple, de Rocscience

RocTopple, de Rocscience

Entre toda la oferta de programas informáticos de Rocscience no había nada todavía para calcular el toppling o vuelco de estratos, pero parece que eso se va a acabar, porque ya están buscando betatesters (probadores) para la versión 1.0 de su nuevo programa, RocTopple.

RocTopple, de Rocscience

Por lo que se ve, RocTopple lleva integrado el método de Goodman y Bray, admite criterios de rotura Mohr-Coulomb y Barton-Bandis, puede manejar cargas externas (anclajes, bulones, etc.), esfuerzos sísmicos y nivel freático, y también realiza análisis de sensibilidad. Todo lo anterior con modelos 2D y 3D.

Siendo betatester te puedes ahorrar 100$ en la compra del programa.

Más información en el folleto (pdf – 1,80 MB).

RocTopple de Rocscience, para calcular toppling o vuelco de estratos